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Abstract—We introduce here a simple theory of antenna 

radiation and scattering that fully extends into the time 

domain a number of standard antenna terms, including 

gain, realized gain, effective length, antenna pattern, 

beamwidth, scattering cross section, and radar cross 

section. Power wave theory applies to linear reciprocal 

antennas of all feed impedances and feed types, including 

waveguide feeds. It also applies to antennas embedded in 

any lossless medium. The theory also leads to a natural 

definition of mutual coupling coefficient in antenna 

arrays. The approach is analogous to that used to describe 

circuits with generalized scattering parameters, with 

different reference impedances at each port. We identify 

receiving and transmitting impulse responses, and prove 

that they always have a simple relationship to each other, 

provided that the antenna has no nonlinear or 

nonreciprocal components. We also identify a scattering 

impulse response that can be applied to either an antenna 

or an arbitrary scatterer. From these functions, we build 

a Generalized Antenna Scattering Matrix (GASM), which 

provides a complete description of antenna response in the 

far field. This establishes a formalism that allows one to 

calculate antenna response under a variety of conditions, 

including, for example, a source or load of arbitrary 

impedance. The approach simplifies and clarifies 

terminology for characterizing antenna performance in 

both the time and frequency domains. 

 

Index Terms—Antenna Characterization, Frequency 

Domain, Time Domain, Antenna Impulse Response, 

Scattering Impulse Response, Generalized Antenna 

Scattering Matrix (GASM), Antenna Equation.  

I. INTRODUCTION 

We address here the problem of characterizing antenna 

performance in the time domain. Currently, no standard terms 

have been defined in the antenna definitions standard [1], 

which becomes a challenge, for example, when buyers and 

sellers of wideband antennas need to discuss antenna 

specifications. In this work, we cast the antenna equations into 

a particularly simple form. This allows us to very naturally 

extend into the time domain a collection of commonly used 

antenna terms, including gain, realized gain, effective length, 

antenna pattern, beamwidth, radar cross section, and 

scattering cross section. Our formulation also clarifies antenna 

theory in the frequency domain, because it leads to a rigorous 

definition of mutual coupling coefficient in antenna arrays. An 

earlier version of this paper appeared in [45].  

This work extends our earlier work [2, 3] and that of Baum 

[4]. We simplify Baum’s antenna equations by normalizing 

the voltages and electric fields to the square root of a local 

reference impedance (typically 50  or 120 ). This leads 

to obvious choices for antenna impulse response and 

scattering impulse response. We show how these functions are 

simply related to most of the commonly used expressions in 

antenna theory. Furthermore, we show how the resulting 

definitions can treat sources and loads with arbitrary 

impedances, and waveguide feeds. This covers nearly all the 

cases one can imagine for linear antennas without 

nonreciprocal components, such as ferrites. We limit our 

treatment here to antennas embedded in in lossless materials. 

While we do not treat lossy materials, neither do the standard 

definitions of antenna gain or radar cross section. (If they did, 

they would be dependent upon the distance of the observer 

from the antenna, which is not the case.) Lossy materials may 

be considered in a later paper.  

The problem of antenna characterization in the time domain 

has been studied many times [4-15, 39-40]. This problem is 

related to that of optimizing antenna response in the time 

domain to a specified figure of merit [16-19]. Despite the large 

amount of previous work, there is no widely accepted method 

of characterizing antennas in the time domain. This is made 

clear by the fact that there are no definitions that describe time 

domain antenna performance in [1].  

To illustrate the problem, we note how one might describe 

in the time domain the far-field performance of an Impulse 

Radiating Antenna (IRA) (Figure 1.1) on boresight for 

dominant polarization. (The definition of the far field in the 

time domain is provided at the end of Section II.) One might 

show the voltage received into a 50- load, when excited by 

an infinite plane-wave electric field with Gaussian time 

dependence (Figure 1.2, top). Alternatively, one might show 

the radiated electric field when driven by a Gaussian 50- 

voltage source (bottom). One would normally show these for 

varying pulse widths (left and right). The bottom two 

waveforms are proportional to the derivatives of the top two 

waveforms. It is unnecessarily cumbersome to use four (or 

more) waveforms to describe the same phenomenon, when a 

single one will do. A primary goal of this paper is to reduce 

this description of antenna performance to a single waveform, 

the impulse response of an antenna.  

A Power Wave Theory of Antennas 

 

Everett G. Farr 

Farr Fields, LC 

(Email: egfarr@gmail.com) 

 



Forum for Electromagnetic Research Methods and Application Technologies (FERMAT) 

 

2 

 

 
Figure 1.1.  The Farr Fields model IRA-3Q, with a diameter of 46 cm.   

 

We begin by deriving the antenna equations in transmission 

and reception, as described previously by Baum [4]. By using 

a different normalization, these expressions simplify 

considerably. This leads to obvious choices for impulse 

responses in transmission and reception, which are always 

related to each other by the antenna self-reciprocity equation. 

We then show how the impulse responses are related to 

common terms, such as gain, realized gain, and effective 

length. Next, we establish a scattering impulse response, 

which is closely related to radar cross section. The resulting 

parameters are then incorporated into a Generalized Antenna 

Scattering Matrix (GASM), which is reminiscent of scattering 

parameters in circuit theory. They are also somewhat 

reminiscent of Plane Wave Scattering Matrix Theory [36-38]. 

The GASM fully characterizes in the far field any linear 

reciprocal antenna in lossless media, in both the frequency and 

time domains. We show how the GASM is used to treat 

various problems associated with arbitrary impedances in the 

source or load. Finally, we suggest a number of standard terms 

that should be considered for inclusion in the antenna 

definitions standard [1]. We begin now by deriving the far-

field antenna equations in transmission and reception.  

II. ANTENNA IMPULSE RESPONSE IN TRANSMISSION AND 

RECEPTION 

We derive here the basic equations of transmission and 

reception in antennas in the far field, following the 

development of Baum [4]. We extend his work by normalizing 

voltages and fields to the square root of a local reference 

impedance. This simplifies the equations to the point where it 

becomes obvious how to define the impulse response of an 

antenna.  

Before deriving the equations, we introduce the concept of 

reference impedance. Impulse response will be defined with 

respect to two reference impedances – one at the input port 

and one that is the characteristic impedance of the medium. 

These values are most commonly Zo1 = 50  and 

Zo2 = 120  , although they may both be any real value. In  
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Figure 1.2. Characterizing an Impulse Radiating Antenna on boresight for 

dominant polarization by its response to an incident infinite plane-wave 

electric field with Gaussian time dependence (top), and a Gaussian 50- 

source voltage (bottom), at two different Gaussian pulse widths (left and 

right). Note that tFWHM is the Full-Width Half Max of the incident field or 
voltage. (Scale is approximate.) 

 

Section III, we show how such an impulse response can be 

extended to the case of waveguide feeds, where there is no 

obvious choice for the port reference impedance.  

Real reference impedances impose only a small limitation 

on the types of problem that can be described. The S11 at the 

input port any circuit or antenna is always measured with 

respect to a real reference impedance, typically 50 . 

Similarly, antenna gain, realized gain, and radar cross section 

are all defined only for lossless media. If lossy media were 

permitted, then these quantities would all vary with the 

distance of an observer from the antenna. There is 

considerable merit to extending this work to lossy media, but 

we leave that for a future paper.  

In this section we treat only the dominant polarization of the 

antenna, looking only on boresight. Furthermore, the 

impedances of all sources and loads are equal to the port 

reference impedance. By studying just this extremely limited 

case, the definitions of most of the common antenna terms 

become apparent. At first, this might seem surprising. 

However, in an analogous way, 2-port circuits can also be 

fully characterized when both ports are terminated in 50  

sources or loads. In later sections we remove all restrictions 

and treat the most general case.  

We derive all equations in the frequency domain, and only 

later convert to the time domain. We treat the frequency 

domain inversion as an inverse Laplace transform, so we use 

the frequency variable s = j, where  = 2  f. Using the one-

sided Laplace domain permits an added level of flexibility 

over the Fourier domain, since it can treat a number of 

additional cases. It can handle source signals that are not 

integrable, such as a step function. It can also treat initial 

conditions on the source or load, such as an initial voltage on 
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a capacitor. Finally, it can treat complex frequencies. An 

excellent survey of the differences between the two domains 

is provided by Tesche and Bertholet in [41]. Note that a 

Fourier transform works if none of the above special cases is 

being analyzed.  

We next introduce the concept of power waves. In the 

theory of generalized scattering parameters [22, p. 204], it is 

common to treat incident and scattered “waves,” typically 

designated by 
11 /

~
oZVa  and 

11 /
~

oZVb  , where Zo1 

is a real reference impedance associated with Port 1. Various 

authors use a variety of terminology to describe these waves. 

Pozar [22, p. 204] uses simply “wave amplitude,” Gonzales 

uses “normalized voltage” [42, p. 29]. Vendelin [43, p. 7] uses 

“power waves.” Collin [21], Kurokawa [22], and Gonzales 

[42, p. 45] use “power waves” with a somewhat different 

meaning than Vendelin, in which the reference impedance is 

the real part of a complex source or load impedance. For this 

paper, we find no alternative to “power wave,” because we 

require three related varieties -- power waves, power flux 

density waves, and radiation intensity waves. We will see later 

that only by tracing power waves through an antenna can we 

realize the simplest form of the antenna equations, eqns. (3.3) 

and (3.4). We therefore use “power waves” in the sense used 

by Vendelin.  

We consider first the equations of an antenna in 

transmission. We consider three cases for driving the antenna: 

open circuit voltage, V
~

, short circuit current, I
~

, and a source 

power wave, 1/
~

osrc ZV , as shown on the left in Figure 2.1. 

In this latter case, the source voltage, srcV
~

, is a voltage wave 

incident upon the port from an infinitely long lossless feed 

transmission line of real characteristic impedance Zo1. The 

antenna radiates into a medium of real characteristic 

impedance Zo2 and real propagation velocity v. The input 

impedance of the antenna, inZ
~

, may be complex.   

The equations in transmission may be expressed in one of 

three forms, depending on the source type: open circuit 

voltage, short circuit current, or power wave, 
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Figure 2.1. Three cases of antenna transmission (left) and reception (right) under conditions of open circuit (top), short circuit (middle), and power wave 

(bottom).   
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Here, radE
~

 is the radiated far field, jkvs  / , s = j, 

and vfvk /2/    is the propagation constant in the 

surrounding medium. Note that these equations simply define 

the various forms of F
~

, and show the relationship between 

them. We have intentionally normalized both sides of the third 

equation to the square root of the local reference impedance, 

for reasons that will become apparent shortly. 

The power wave source may be envisioned as a Thévenin 

equivalent circuit with a voltage srcV
~

2  and a impedance Zo1, 

as shown in Figure 2.3. Sources with arbitrary impedances 

will be treated in Section VII. 
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Figure 2.2. Thévenin equivalent circuit of the power wave source voltage.  

Next, we consider the antenna equations in reception. As 

before, we consider three cases: open circuit voltage, short 

circuit current, and received power wave, as shown on the 

right in Figure 2.1. In the third case, the received voltage,  

recV
~

, is the voltage wave launched onto an infinite lossless 

transmission line of real characteristic impedance Zo1. 

Alternatively, recV
~

is just the received voltage across a load 

resistor of value Zo1. In these cases we have 
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   (2.2) 

Note that we use the convention here that positive current 

flows into the load. Note also that these equations simply 

define the various forms of h
~

, and show the relationship 

between them. 

We now seek a relationship between F
~

 and h
~

. To find this 

we use Baum’s method [4], which applies the principle of 

reciprocity. Consider a two-port circuit consisting of two 

antennas positioned in each other’s far field, as shown in 

Figure 2.3. If we consider this to be just two ports of a linear 

time-invariant circuit, then it can be described in terms of Z- 

or Y-parameters, which relate open circuit voltages on one port 

to short-circuit currents at the other. For a reciprocal system, 

2112
~~
ZZ   and 2112

~~
YY  , as shown, for example, in [22, pp. 

193-194]. 
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Port 2 Antenna 2 Port 1 Antenna 1 

Figure 2.3.  Two-port equivalent circuit of a two-antenna system.  

Thus, if we drive Port 1 with an open circuit voltage and 

measure the short-circuit current at Port 2, we get the same 

result if we switch the two ports. The two short-circuit 

currents are expressed as 

)2()2()1()1(

)1()1()2()2(

~~~~

~~~~

VFh
r

e
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VFh
r

e
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r
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


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




 ,              (2.3) 

where the superscripts (1) and (2) specify the antenna. Since 

)1()2( ~~
scsc II 

 
 and )2()1( ~~

VV  , 

)2(

)2(

)1(

)1(

~

~

~

~

I

V

I

V

h

F

h

F
 ,        (2.4) 

and since inIV ZFF
~

/
~~

  and inVI Zhh
~

/
~~

 , we have  

)2(

)2(

)1(

)1(

~

~

~

~

V

I

V

I

h

F

h

F
  .               (2.5) 

These are fundamental reciprocity relationships that must be 

satisfied by any linear reciprocal antenna.  

The above equation demonstrates that the ratio VI hF
~

/
~

is a 

universal constant associated with all linear reciprocal 

antennas. So if we know VI hF
~

/
~

 for a simple antenna, such as 

an electrically small electric or magnetic dipole (Antenna #2), 

we know the ratio for any arbitrary Antenna #1. Fortunately, 

both IF
~

 and Vh
~

 have already been calculated for electrically 

small electric and magnetic dipoles, and we can take 

advantage of those results. For an electrically small electric 

dipole [4, 23] 
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eVeI hhh
s
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~

,
4

~



    ,              (2.6) 

where he is the effective height of the electrically small electric 

dipole and  is the permeability of the surrounding medium, 

vZo /2 . Note that [23] treats the case of arbitrary lossless 

media, while [4] is limited to dipoles in free space.  

Similarly, for an electrically small magnetic dipole [4, 23] 

v

As
hA

v

s
F h

VhI 
~

,
4

~
2



 ,          (2.7) 

where Ah is the effective area of the magnetic dipole. Taking 

the ratios in the above two equations, we find for both 

electrically small electric and magnetic dipoles 

I

V

V

I

h

Fs

h

F
~

~

4
~

~




 .                (2.8) 

Because of the relationships in (2.4) and (2.5), these 

relationships must be true for all linear reciprocal antennas. 

We now calculate hF
~

/
~

 as 

h

h

h

F

F

F
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F V
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I
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~

~
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~

~

 .                   (2.9) 

By combining (2.9) with (2.1), (2.2), and (2.8), and using 

/2oZv  , we obtain 



hj

v

hs
F

~

2

~
~

 .              (2.10) 

This is the law of antenna self-reciprocity. For reasons that 

will become apparent later, we refer to F
~

 as the transmitting 

transfer function, and h
~

 as the receiving transfer function. 

The important result here is that once one knows an antenna’s 

receiving transfer function, there is no need to further specify 

its transmitting transfer function. Of course, this expression 

only applies to those antennas operating in a linear fashion, 

without nonreciprocal components such as ferrites. This 

expression may also be found in [14, eqns. 4 & 5], where it is 

limited to antennas in free space. 

In the time domain, the two transfer functions shown in eqn. 

(2.10), F
~

 and h
~

, become the transmitting and receiving 

impulse responses, respectively. Note that this terminology is 

a modification from earlier papers [2, 3, 7, 24], in which we 

used “impulse response” in both the time and frequency 

domains. Our new terminology is now consistent with 

common usage in system theory. 

By combining (2.10) with (2.1) and (2.2), we find  
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In the most common case,  501oZ , and  1202oZ . 

This was the case that was treated in [2, 3], where we used the 

symbol Nh
~

. Here, we use the symbol h
~

 to represent a more 

general quantity.  

 If we take the inverse transform of the above equations, we 

obtain the results in the time domain,  

vrtt

Z

tE
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Z
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,       (2.12) 

where “ ” is the convolution operator.  

 Next, we derive an alternative form of the above results that 

will be more convenient in some cases. First, we note the 

general relationship, 

)()()()( tgtftgtf  ,                 (2.13) 

where f and g are arbitrary functions of time, and the prime 

indicates a time derivative. Both f(t) and g(t) are assumed to 

be zero for t  < 0. To prove this relationship, we express it in 

the frequency domain as 

gfsgsf ~~~~
 ,                        (2.14) 

where the relationship is now obvious. An alternative proof of 

2.13 is found in [44], which states that  ])()([ tgtf  

)()()()( tgtftgtf  . Note that some refinement may 

be required for non-zero initial conditions, which we leave for 

a later paper. Using this relationship, the transmitting equation 

becomes  

vrtt

Z

tE
th

Z

tV

Z

tV
th

rvZ

tE

o

inc

o

rec

o

src

o

rad

/

)(
)(

)(

)(
)(

2

1)(

21

12










.           (2.15) 

We will see that this form of the transmitting relationship can 

be more convenient in some cases.  

 Based on the above relationships, the law of antenna self-

reciprocity, (2.10), can be represented in the time domain as  

v

th
tF

2

)(
)(


  .                           (2.16) 

In other words, the transmitting impulse response of any linear 

antenna is simply the time derivative of the receiving impulse 

response divided by 2v. Recall that the physical meanings 

of F(t) and h(t) are the inverse Laplace transforms of F
~

 and 

h
~

, which were defined earlier in eqns. (2.1) and (2.2), 

respectively. 

 Let us now consider how one could use the above equations 

on an antenna range, where there are two antennas. 

Combining the two equations for transmitting and receiving 

antennas in eqn. (2.15), we have  

vrtt

Z

dttVd
thth
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TXRX

o

rec

/

/)(
)()(

2

1)(

11






 , (2.17) 
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where hTX(t) and hRX(t) characterize the transmitting and 

receiving antennas, respectively.  

The above equation suggests a simple method of 

characterizing an unknown antenna on an antenna range. One 

commonly calibrates the antenna range using two identical 

transmitting and receiving antennas. One then measures the 

source and receive voltages, and solves for the only remaining 

unknown, the h
~

 of the identical transmit/receive antennas, 

resulting in 

src

rec

Vs

Vrv
h ~

~
2~ 

 .                        (2.18) 

One then replaces one of the standard antennas with the 

antenna under test, and solves (2.17) for the unknown AUTh
~

. 

Note that care must be taken to avoid dividing by a small 

number, and to choose the correct sign in the square root by 

unwrapping the phase. Additional detail is provided in [24, 

Appendix D].  

The above equations are valid only for antennas that are in 

each other's far field. The far field of an antenna is that portion 

of the radiated field that is inversely proportional to the 

distance from the antenna, in either the frequency or time 

domain. The far field in the time domain is just the inverse 

transform of the far field in the frequency domain. When 

making measurements, one must set the antennas at a minimal 

distance from each other. In the frequency domain, this 

distance is described by [25, p. 30] 

Dr

r

Dr









/2 2

,                            (2.19) 

where D is the antenna diameter, and  is the wavelength. 

Alternatively, Giri has formulated an analogous expression in 

the time domain [26] 

)2/(2
mrtcDr  ,                        (2.20) 

where tmr is the maximum source voltage divided by the 

maximum rate of rise. This is probably best understood as an 

estimate. In practice, one would normally verify that measured 

fields are indeed proportional to 1/r before accepting the data. 

This equation also appears in slightly different form in [27].  

In the above equations we have assumed that both 

transmitting and receiving antennas are positioned so that 

reflections from the ground, chamber walls, and support 

structures are all excluded from h(t) by using absorber 

material and/or with time gating.  

Having expressed the field equations in the usual form, we 

now simplify those expressions further by using power waves, 

in the next section.  

III. ANTENNA EQUATIONS FORMULATED WITH POWER 

WAVES 

In [2, 3], we claimed that antenna equations similar to (2.11) 

and (2.12) were in the simplest possible form we could 

imagine. However, since writing those papers, we found two 

reasons why further simplification was necessary. First, it is 

challenging to express those equations in words, as is required 

by the antenna definitions standard [1]. Second, it is clumsy 

to use those expressions in signal flow graphs, which we use 

to simplify more complicated calculations, such as sources or 

loads with arbitrary impedances. We therefore found it 

necessary to simplify the antenna equations even further. As 

before, we limit our treatment to dominant polarization on 

boresight, with source and load impedances equal to the port 

reference impedance, Zo1. A more general treatment is 

provided in Sections VI and VII.  

To simplify eqns. (2.11) and (2.12), we introduce new 

terminology and symbols related to scattering parameters, 

which relate scattered power waves to incident power waves. 

To describe antennas, we require two additional types of 

power waves, a radiation intensity wave and a power flux 

density wave. The various power wave types are defined as 

follows: 
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 (3.1) 

The symbols , , and  are Greek versions of P, U, and S, 

which are the commonly used symbols for power, radiation 

intensity, and power flux density, respectively [25, pp. 37-38]. 

Thus, to convert the symbol for a “power” quantity to that of 

a “power wave” quantity, we make the symbol Greek. To 

make the relationships clear, we note that these four power 

wave quantities are related to well-known quantities as  

 

 

22*

2*

2*

2*

~
ˆ

~~
Re

2
1~

~~~
Re

2
1~

~~~
Re

2
1~

~~~
Re

2
1~

radradradrad

incincincinc

recrecrecrec

srcsrcsrcsrc

rrHEU

AdHES

IVP

IVP














 






 











Intensity Radiation

DensityFlux Power 

Power

,   (3.2) 

where incS
~

 is the incident power flux density on boresight and 

radU
~

 is the radiated radiation intensity on boresight. Thus, we 

see that the various power wave quantities are simply the 

square roots of the corresponding power quantities, with a 

suitable phase.  

 Note that the various versions of power waves satisfy the 

laws of superposition, since they are just voltages or fields 

divided by the square root of a real impedance. If voltages or 
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fields satisfy superposition, the same is true when then are 

multiplied by a scalar. Note also that the radiated radiation 

intensity wave, rad
~

, is independent of r as r . Recall 

that rErad /1
~

 in the far field, and the phase factor re  

simply removes the time delay between the antenna and the 

observation point. 

We now substitute the above expressions into eqn. (2.11) to 

find simpler versions of the transmit and receive equations in 

the frequency domain,  

ιincrec

src

srcsrcrad

h

h
j

h
v

s
F











~~~

~~

~~

2

~~~







.         (3.3) 

In the time domain, eqn. (2.12) becomes  

 

)()()(

)(
2

)(

)(
2

)(

)()()(

ttht

t
v

th

t
v

th

ttFt

increc

src

src

srcrad






















.                   (3.4) 

These really do seem to be the simplest possible expressions 

for antenna radiation and reception. It will be straightforward 

to put these equations into words so they may be included in 

the antenna definitions standard [1]. Extensions to arbitrary 

angles and to two polarizations are handled in Section VI. 

Extensions to arbitrary source and load impedances are 

handled in Section VII.  

Looking at the above equations, it now becomes apparent 

why h(t) and F(t) are referred to as the receiving and 

transmitting impulse responses, respectively. Similarly, it is 

also clear why h
~

and F
~

 are referred to as the receiving and 

transmitting transfer functions. We note that the transmitting 

properties contain no new or unique information. To fully 

specify antenna performance, all that is necessary are the 

receiving properties, along with the port and medium 

reference impedances, and the velocity of propagation in the 

medium. For that reason, we recommend that h(t) and h
~

 may 

alternatively be called simply the “impulse response” and 

“transfer function” of the antenna, respectively. We explain 

the preference of h(t) over F(t) in Section VIII. 

We can now appreciate the value of normalizing voltages 

and fields to the square root of the local reference impedances, 

Zo1 and Zo2. This is the only way to force eqns. (3.3) and (3.4) 

to be independent of the reference impedances. This is also a 

well-known property of conventional scattering parameters 

[42, pp 35-36]. This property allows the equations to apply to 

waveguide feeds, for which there is no obvious choice of 

reference impedance. In this case, the reference impedance 

becomes a reference mode, for example, the TE10 mode of a 

WR-90 waveguide. While the impedance of a waveguide 

mode is ambiguous, the reflection coefficient at a waveguide 

port is well understood. These reflection coefficients will be 

used in Section VII to characterize antennas with arbitrary 

source and load impedances. 

The new definitions of the various power wave quantities in 

eqn. (3.1) may at first glance look unfamiliar and unnecessary. 

However, we show in later sections how they are simply 

related to all of the familiar antenna terms in the frequency 

domain. Because they also form the basis of all the new time 

domain parameters, such as impulse response, the power 

waves defined in eqn. (3.1) begin to look like fundamental 

building blocks of antenna theory.  

Next, we consider how to convert the transfer function of 

an antenna to commonly used terms in the frequency domain. 

IV. GAIN, REALIZED GAIN, EFFECTIVE LENGTH, AND 

EFFECTIVE AREA 

We now derive the relationships of the antenna transfer 

function to realized gain, gain, effective length, and effective 

area. We derive realized gain from both the transmission and 

reception equations, and show that we obtain the same result. 

We follow the derivation in [2], but we have generalized it to 

cover more cases.  

We continue to consider only dominant polarization on 

boresight, with source and load impedances equal to the port 

reference impedance, Zo1. Even this limited case is sufficient 

for deriving the desired quantities. More general cases are 

treated in Sections VI and VII.  
 

A.  Realized Gain Derived from the Receive Equation 

 We begin by deriving realized gain from the receive 

equation. From (2.11) and (3.3), the received voltage into the 

reference impedance, Zo1, is 

ιincrec
o

inc

o

rec h
Z

E
h

Z

V

~~~

~
~

~

21

 ,  (4.1) 

where we have used both sets of notation. If we multiply both 

sides of (4.1) by their complex conjugates, we get the received 

power as  

increc ShP
~~~ 2

 ,                            (4.2) 

where incS
~

 is the incident power flux density. Alternatively, 

the received power is  

incrrec SGP
~

4

~~
2




 ,                        (4.3) 

where rG
~

 is the realized gain. If we now divide (4.3) by (4.2), 

we get  

22

2

~
4|

~
|

4~
FhGr 




 .                   (4.4) 

Note that h
~

 and F
~

 are dependent upon the reference 

impedances of both the port and the medium, typically 50  

and 120  , respectively. In addition,  is the wavelength in 

the medium.  
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B. Realized Gain Derived from the Transmission 

 Equation 

 Alternatively, we can derive realized gain from the 

transmitted field equation. In transmission, the radiated field 

is  

srcrad
o

src
r

o

rad h
j

Z

V
h

r

e

v

s

Z

E








~~~

~
~

2

~

12




 ,

 (4.5) 

where jk  and s = j . If we multiply both sides by their 

complex conjugates, we get 

22

2

2

1

2
2

22
2

2

~~1~

~
~1

~
~

srcrad

o

src

o

rad
rad

h

Z

V
h

rZ

E
S











 .        (4.6) 

where radS
~

 is the radiated power density on boresight. Now 

realized gain is defined as  

2

2

2

2

2

1

2

2

222

~
4

~
4

~

~
4

/
~

/
~

4

~

~
4~

F
h

ZV

ZEr

P

Sr
G

src

rad

osrc

orad

src

rad
r
















.    (4.7) 

This is the same result we found in (4.4). So the relationship 

between rG
~

 and h
~

 is consistent when derived in two different 

ways.  
 

C.  Antenna Gain 

 Antenna gain may be found from realized gain using the 

relationship [1]  

1

1
2 ~

~
~

,
~

1

~
~

oin

oinr

ZZ

ZZG
G








 ,           (4.8) 

where 
~

 is the reflection coefficient looking into the antenna 

port as measured relative to Zo1. Note that the factor 2|
~

|1   

is the impedance mismatch factor, as defined in [1]. In the time 

domain, (t) is referred to as the reflection impulse response.  

 Realized gain is often a more useful measure of antenna 

performance than gain, because it includes the effect of 

impedance mismatch. It also simplifies the signal processing 

on a time domain antenna range, because no measurement of 

11
~
S  or 

~
 is needed. For well-matched antennas, the two 

versions of gain are very close. 
 

D.  Effective Length 

 Effective length is the term in the antenna definitions 

standard [1] that is most closely related to the receiving 

transfer function, h
~

. Effective length is the open circuit 

voltage in response to an incident plane wave. This is already 

defined in eqn. (2.2) as Vh
~

, and is related to the transfer 

function  by  

h
Z

Z

Z

ZZ
h

o

o

o

oin
V

~
~

~

2

1

1

1
  .                (4.11) 

E.  Effective Area 

Let us consider now the effective area of an antenna. From 

[1, p. 13] and [25, p. 79], we have  

GAe
~

4

2




 .         (4.12) 

Furthermore, from eqns. (4.8) and (4.4) we have 

 2

2

2
|

~
|

4~
1

~~
hGGr













 .    (4.13) 

Combining the above two equations, we have  

2

2

~
1

~




h

Ae
.                              (4.14) 

So we see that the transfer function, h
~

, is related to the square 

root of the effective area or aperture, except that it has a 

meaningful phase, and it is adjusted by the impedance 

mismatch factor.  

V. RADAR CROSS SECTION, SCATTERING CROSS SECTION, 

AND THE SCATTERING IMPULSE RESPONSE 

The new expressions defined in Section III can be used to 

extend radar cross section (RCS) into the time domain. This 

idea can be applied to either an antenna, or just a simple 

scatterer. We treat here the case of dominant polarization on 

antenna boresight. The antenna port is assumed to be loaded 

with the port reference impedance, Zo1. We treat more general 

cases later.  

The incident power flux density wave is related to the 

radiation intensity wave as  

incrad
o

inc
r

o

rad

Z

E

r

e

Z

E



~~~

,

~
~

~

22

 


 ,    (5.1) 

where 
~

 is the scattering coefficient and jk . Here, we 

express the relationship using both sets of notation. In the time 

domain, (t) is the  scattering impulse response. We can 

multiply (5.1) by its complex conjugate to get 

2222222 ~~~
,

~~~
incradincrad EEr     . 

(5.2) 

The usual expression for RCS is  

2

2

2

2

2

~

~

4
~

~

4

inc

rad

inc

rad

E

E
r




  .            (5.3) 

So we find the monostatic RCS on antenna boresight is just  

2~
4   .                               (5.4) 
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The scattering cross section generalizes the above to multiple 

polarizations and arbitrary angles of incidence and 

observation. We treat this in the next section. We treat the case 

of scattering when the antenna has an arbitrary load in Section 

VII.C. 

VI. THE GENERALIZED ANTENNA SCATTERING MATRIX 

AND THE ANTENNA EQUATION 

 We are now ready to define the Generalized Antenna 

Scattering Matrix (GASM), which is a complete far-field 

characterization of any linear reciprocal antenna embedded in 

a lossless medium. This aids our understanding of the 

equations, and it allows one to easily calculate antenna 

response when, for example, the source or load impedance is 

different than the port reference impedance, Zo1. First, we treat 

the special case of dominant polarization on boresight. Then 

we extend it to two polarizations and arbitrary angles of 

incidence and observation.  

To build the GASM, we combine the equations of Sections 

III and V into a set of matrix equations. We can express these 

two different ways, leading to  
















 
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



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




inc

src

rad

rec

vhs

h

a
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SS

SS

b

b








~

~

~
)2/(

~

~~

~

~

~

~

~~

~~

~

~

2

1

2221

1211

2

1



 .              (6.1) 

We sketch these in Figure 6.1, where the analogy to a 2-port 

network is clear. Note that Port 2 is a virtual port or radiation 

port. An analogous treatment of an antenna as a two-port 

device appears in [28]. We find it useful to refer to eqn. (6.1) 

as the antenna equation for dominant polarization on 

boresight.  
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Figure 6.1. The Generalized Antenna Scattering Matrix (GASM), on boresight, for dominant polarization.  

 

 

The port voltage and current, 
pV

~  and 
pI

~ , are proportional 

to the sum and difference of the two power waves at Port 1,  

 
 
  1

1

~~~
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orecsrcp

orecsrcp

ZI

ZV


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
,                  (6.2) 

where pI
~

 is the current flowing into the load.  

It may be useful to compare eqn. (6.1) above to eqn. (1.3-

11) in Kerns [36], since they look somewhat similar. Kerns’s 

Plane Wave Scattering Matrix shows how waveguide modes 

at the antenna input port are related to a spatial spectrum of 

plane waves in the near field. Our GASM shows how power 

waves at the input port are related to the far fields for dominant 

polarization on boresight. Later in this section we generalize 

to both polarizations and arbitrary angles.  

In the time domain the antenna equation, eqn. (6.1), takes 

the form 


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,    (6.3) 

where the “ 
  ” operator is a matrix-product convolution 

operator, defined as 
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We were unable to find a standard notation for the above 

operation, so we defined our own.  

The above representation is reminiscent of generalized 

scattering parameters [22, p. 204], which permit different 

reference impedances at each port. However, there are at least 

three major differences. First, the elements of the GASM are 

not unitless. Indeed, both h
~

and 
~

 have units of meters. 

Second, it is never the case that S12 = S21, which is normally a 

property of reciprocal devices operating in a linear fashion. In 

the GASM this can never be true because the units are 

mismatched. Finally, the GASM can never be unitary 

(determinant equal to unity), while this property is always true 

of the scattering matrices of lossless linear two-port devices. 

These facts will no doubt be disconcerting to some, but the 

value of the GASM lies in its ability to simplify and clarify 

the antenna equations.  

It is useful now to represent the above equation as a signal 

flow graph, as shown in Figure 6.2. The theory of signal flow 

graphs is discussed in several texts [22, 29, 30, 42]. This 

formalism simplifies calculations involving sources or loads 

with arbitrary impedance, as described in the next section.  
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Figure 6.2 Signal flow graph representation of the GASM. 

 Next we extend the antenna equation to the more general 

case of two polarizations, with arbitrary angles of incidence 

and observation. We use a spherical coordinate system of (r, 

, ) with  = 0 on antenna boresight. For now, we consider 

only linear polarization – we discuss circular polarization 

later. Thus, we have 
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In this expression, the unprimed angular coordinates are the 

angles of observation, and the primed coordinates are the 

angles of incidence. In the time domain, the antenna equation 

becomes 
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So an antenna is completely specified by (t), two 

components of ),,( th 


, and. three components of the dyadic 
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in linear antennas.) Alternatively, an antenna could be 

specified in terms of the frequency domain versions of these 

quantities. All quantities assume a specified port reference 

impedance, Zo1, a specified medium impedance, Zo2, and a 

velocity of propagation through the medium, v.  

A compact way of expressing (6.5) is to introduce vector 

and dyadic notation. Thus, we have  
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where the superscript “T” indicates a transposed vector. This 

more compact form may be represented in a vector signal flow 

graph, as shown in Figure 6.3. Here, multiplications are 

interpreted as matrix products. An alternative representation 

that avoids a vectorized signal flow graph is shown in Figure 

6.4. This is a direct implementation of eqn. (6.5).  

In the next section we use signal flow graphs to calculate 

antenna responses with arbitrary source and load impedances.  
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~
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~
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~
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
~

T
~
h
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~
)2/(

~
vhs 


1 

1 

1 

1 

 
Figure 6.3 Vector signal flow graph representation of the GASM 

including both polarizations.  
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Figure 6.4 Scalar signal flow graph representation of the GASM including both polarizations.  

 

VII. ARBITRARY SOURCE AND LOAD IMPEDANCES 

Until now, we have assumed that the source and load 

impedances were always equal to a real reference impedance, 

Zo1. We treat here arbitrary source and load impedances using 

signal flow graphs, which are also commonly used with 

standard scattering parameters.  
 

A. Transmitting with a Source of Arbitrary Impedance  

We begin by calculating the radiated field when an antenna 

is driven by a source with arbitrary complex source 

impedance. At first, we look only on boresight, for dominant 

polarization. The goal is to find the ratio of rad
~

 to 
src

~ . 

 The antenna is embedded in a medium of characteristic 

impedance Zo2. A sketch of the relevant portion of the signal 

flow graph is shown in Figure 7.1. We are able to delete parts 

of it because there is no incident field (or incident power flux 

density wave).  

 
rad
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rec
~
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~


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)2/(
~

vhs 

src
~

1 

 
Figure 7.1 Signal flow graph for a source with arbitrary impedance.  

The only new term is src
~

, the reflection from the source 

impedance, given by  

1

1
~

~
~

osrc

osrc
src

ZZ

ZZ




 .                           (7.1) 

 

The graph is now resolved as  

src
src

rad
v

hs




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2
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~~
1

1~


 .                (7.2) 

Signal flow graphs can be resolved using a standard set of four 

rules [30, 22, p. 214], or with Mason's rule [30, 42].  

To find the required input parameters, src
~

 and src
~

, we 

need to establish a relationship between a source power wave 

and a Thévenin equivalent source, which is probably more 

familiar to most readers. The result is shown in Figure 7.2, 

which assumes the reference impedance of the port is Zo1.  
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o
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1
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src
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ZZ




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Figure 7.2. The relationship between a Thévenin equivalent source (left)  and 

a power wave source (right) at a port with reference impedance Zo1.  

Note that the reference impedance of the port, Zo1, does not 

appear explicitly in eqn. (7.2), except in the definitions of two 

reflection coefficients and the source power wave. So eqn. 

(7.2) can be used for waveguide feeds, for which reference 

impedances are ill-defined, but reflection coefficients are 

available.  

To extend this result to both polarizations and arbitrary 

angles, one could build a signal flow graph for each 

polarization. The result would be  

src
src

rad
v

hs







~

2

),(
~

~~
1

1
),(

~





 .         (7.3) 

This provides the complete solution for radiation with a source 

with arbitrary impedance. Conjugate match occurs when 

*~~
insrc ZZ  , and hence 

*~~
src . This optimizes power 

transfer for an antenna with a given input reflection 

coefficient, as shown by Gonzalez [42, p. 240]. 
 

 B. Receiving into an Arbitrary Load 

 Next, we consider antenna reception into an arbitrary 

complex load. As before, we begin by treating incidence on 



Forum for Electromagnetic Research Methods and Application Technologies (FERMAT) 

 

12 

 

boresight, for dominant polarization. The goal is to find the 

ratio of rec
~

 to inc
~

, and also the port voltage. The antenna 

is embedded in a medium of impedance Zo2. A sketch of the 

relevant portion of the signal flow graph is shown in Figure 

7.3. We are able to delete parts of it because there is no source 

power wave driving the port.  

 

rec
~

inc
~


~

h
~

1 


~

src
~

 
Figure 7.3 Signal flow graph for reception into an arbitrary load. 

The new term is 
~

, the reflection from the load impedance, 

given by  

1

1
~

~
~

o

o

ZZ

ZZ




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


 .                              (7.4) 

The graph resolves as  

increc h 
~~

~~
1

1~


 .                    (7.5) 

This equation now takes into account arbitrary complex load 

impedance. The port voltage is found from the sum of two 

power waves, the received power wave, rec
~

, and the 

reflection from the load, recsrc 
~~~

 . Thus, from eqn. 

(6.2), the port voltage is 

recop ZV 
~

)
~

1(
~

1  .              (7.6) 

To extend this result to both polarizations and arbitrary angles, 

one could build a diagram for each polarization and add the 

results to get 
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T
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This provides the complete solution for reception into an 

arbitrary load. Conjugate match occurs when *~~
inZZ  , and 

hence *~~
 . This optimizes power transfer to the load for 

an antenna with a given input reflection coefficient, as shown 

by Gonzalez [42, p. 240].  
 

C.  Scattering from an Antenna with Arbitrary Load 

Next, we consider the case of scattering from an antenna 

with an arbitrary complex load. The signal flow graph of the 

configuration is shown in Figure 7.4. We begin by treating 

incidence on boresight, for dominant polarization. The goal is 

to find the ratio of rad
~

 to inc
~

. The antenna is embedded in 

a medium of impedance Zo2.  
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Figure 7.4 Scattering from an arbitrary load. 

The signal flow graph resolves as  
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One can find an example of how a similar graph is resolved in 

[22, p. 216]. When we generalize to two polarizations and 

arbitrary angles of incidence and observation we obtain.  
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where the dyadic is calculated as  
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This provides the complete solution for scattering from an antenna with an arbitrary load. 

 

VIII. TRANSMITTING VS. RECEIVING ANTENNA 

CHARACTERISTICS 

At several points in this paper, we express a preference for 

characterizing an antenna by its receiving transfer function 

and impulse response ( h
~

 and h(t)) instead of its transmitting 

transfer function and impulse response ( F
~

and F(t)). The 

transmitting characteristics are always simply related to the 

receiving characteristics, and, as a rule, one should not use two 

functions when a single one will do. For that reason, we 

recommend that “impulse response” and “transfer function,” 

without qualifiers, refer specifically to the receiving 

characteristics. We explain here our preference of one over the 

other.  

First, let us concede that the units of the two impulse 

responses favor designating the transmitting impulse 

response, F(t), as the special one. The units of F(t) and F
~

 are 
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1/seconds and unitless, respectively. The units of h(t) and h
~

 

are meters/second and meters, respectively. Other things 

being equal, we prefer a transfer function that is unitless in the 

frequency domain.  

However, other things are not equal, and we prefer h(t) over 

F(t) for three specific reasons. First, the shape of h(t) is 

simpler to interpret than that of F(t). In certain types of 

wideband antennas, typically with focused apertures, h(t) is an 

impulse-like function, which is relatively easy to look at and 

interpret. On the other hand, F(t) is proportional to the 

derivative of h(t), so it is like a doublet, which is more 

challenging to analyze and interpret.  

The second reason for preferring h(t) over F(t) is related to 

the first reason, but in the frequency domain. If h(t) is an 

impulse-like function, then its Fourier or Laplace transform is 

approximately flat over the frequency band. This is a 

convenient property for examining broadband data. On the 

other hand, the Fourier or Laplace transform of F(t) increases 

with frequency at an approximate rate of 20 dB/decade. Such 

a waveform is harder to interpret, because it emphasizes the 

high-frequency part of the spectrum, and de-emphasizes the 

low-frequency part.  

The third reason for preferring h(t) over F(t) concerns 

practical numerical considerations. Consider once again eqn. 

(2.17), which is the two-antenna range equation on boresight 

for dominant polarization. The first step in the analysis is to 

take the derivative of the source function, Vsrc(t) and convert 

it to the frequency domain, possibly with a discrete Fourier 

transform. Typically, the source voltage is an approximate 

step- or impulse-function. The derivatives of these two 

functions are approximate impulse- or doublet-functions, both 

of which begin and end near zero, so the Fourier transform 

operation is well behaved.  

On, the other hand, we can see a practical difficultly 

associated with using F(t) by recasting eqn. (2.17) into an 

expression using F(t),   

vrtt

dttVtFtF
r

v
tV srcTXRXrec

/

)()()(
2

)(



 


. (8.1) 

In this case, the first step in the analysis is to take an integral 

of the source voltage and transform it into the frequency 

domain. But the integrals of approximate step- or impulse-

functions are approximate ramp- or step-functions. These 

functions are not easily transformed to the frequency domain, 

because they do not begin and end near zero. This is a problem 

because common signal analysis with Fourier transforms 

assumes that signals are periodic, which implies an abrupt 

discontinuity where the signal repeats. Discontinuous 

functions are difficult to model as a sum of sinusoids, so the 

use of F(t) is numerically less stable. It may be possible to 

handle the problem using the Fast Laplace Transform [41], but 

this is still a harder problem to solve, and the added 

complexity offers no offsetting benefit.  

Thus, for the three reasons stated above, we prefer to 

establish the receiving characteristics as the default for 

characterizing antennas.  

IX. RELATED ISSUES 

We consider here a number of additional issues related to 

antenna impulse response and power wave theory.  
 

A. Antenna Arrays and Multimode Waveguide Feeds 

If there is an array of N antennas, then eqn. (6.7) can be 

modified to accommodate this. The transfer function becomes 

a N2  matrix (2 rows, N columns), ,
~

jih   ,,...,1;2,1 Nji   

where i indicates one of two polarizations, and j indicates the 

port number. Furthermore, the source and received power 

waves become N-element vectors, src
~

 and rec
~

, and the 

input reflection coefficient becomes an NN   matrix, 
~

. In 

this formulation, 
ji

~  represents the mutual coupling 

coefficient seen at port i from a source at port j. Each port is 

terminated in its own reference impedance, Zoj , j=1,...,N; and 

the medium impedance is ZoN+1. Under these conditions, the 

antenna equations become 
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where the matrix dimensions can be visualized as   
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One can measure 
ji

~ , the mutual coupling coefficient seen at  

port i from a source at port j, by driving port j with a known 

source and measuring the response at port i, while terminating 

all other ports with their respective reference impedances or, 

in the case of waveguides, reference modes with no 

reflections. The antenna is assumed to be radiating into an 

infinite medium of impedance ZoN+1. This is a clarification of 

frequency domain terminology, since mutual coupling is 

currently defined only in very general terms [1]. In the time 

domain, )(tji  is referred to as the mutual coupling impulse 

response. When i = j, this is the reflection impulse response at 

the ith port.  

Multimode waveguide feeds are treated similarly. In this 

case, each mode is treated the same as an element in an 

antenna array. Mode magnitudes are normalized so they 

represent the square root of power in the mode.  
 

B. TDR Response 

The TDR (Time Domain Reflectometer) response of an 

antenna is a useful way of characterizing reflections from an 

antenna port. There are two ways of thinking about the TDR 

response. The first approach is to consider this as the raw 

response of a special oscilloscope with a TDR source, which 

sends an approximate step-function voltage out to the port. 

The risetime on the approximate step function must be fast 
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enough to reveal interesting details in the antenna, and to 

cover the intended bandwidth. The return signal from the 

antenna is what one normally thinks of when referring to a 

TDR response. The challenge here is that different 

instruments provide different risetimes in their incident pulse, 

so the received waveform varies with the specific instrument 

used. We refer to this as the raw TDR response as measured 

on a specific instrument, TDRr(t).   

A second approach to TDR response is simply to integrate 

the reflection impulse response with respect to time,  

 
t

c tdttTDR
0

)()( .                       (9.3) 

This expression has the advantage that it is independent of the 

specific instrument used to measure it, and it is not band-

limited. This is referred to as the compensated or clean TDR 

response. In experiments, one can obtain an approximation to 

the compensated TDR response by deconvolving from the raw 

TDR response the derivative of the TDR response of an ideal 

short circuit at the end of the feed cable. The result is still 

band-limited, but this is the best one can do.  
 

C. Circular Polarization 

Simple coordinate transformation allows us to handle 

circular polarization in the frequency domain. Thus [31],  
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where the subscripts R and L indicate right- and left-hand 

circular polarization, respectively. With these forms, eqn. 

(6.5) becomes 
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While it is straightforward to formally manipulate the 

equations in the frequency domain, further work will be 

necessary to explain the physical meaning of the results for 

circular polarization in the time domain. We leave this for a 

future paper.  
 

 D.  Impulse Response Example 

 Since we have spent so much time talking about the impulse 

response of an antenna, it may be helpful to show an example. 

In Figure 9.1 we show the impulse response and transfer 

function on boresight for dominant polarization of the IRA-

3Q shown earlier in Figure 1.1. This was measured on the Farr 

Fields time domain antenna range, using a Tektronix model 

TDS8000B sampling oscilloscope with a model 80E04 

sampling head, a Picosecond Pulse Labs model 4015C pulser, 

and a Farr Fields model TEM-1 TEM sensor.  

 

         
Figure 9.1.  Impulse response (left) and transfer function (right) of the IRA-3Q. 

 

 

 

 E.  Impulse Integral 

Certain types of antennas have impulse responses on 

boresight that approximate a Dirac delta function over their 

midband range. The IRA-3Q shown earlier is one possible 

example, although a possibly better example is that of a long 

TEM horn. In these cases, the impulse response for dominant 

polarization on boresight may be approximated as  
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Here, ha is the impulse integral, which is a scalar with units of 

meters. The integral is taken over the impulsive portion of the 

impulse response. In these cases, the antenna equations on 

boresight for dominant polarization, (eqns. (2.11), (2.12), 

(3.3), and (3.4)) are approximated in the frequency domain by  
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where we have used both sets of notation. In the time domain 

these approximations become  
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When one calculates the impulse integral from an impulse 

response, there is always some ambiguity in determining the 

exact limits of the integration. (Note that the integral over the 

entire waveform must be equal to zero, because it is 

impossible to radiate a DC signal.) So the impulse integral can 

only lead to approximate results with a limited class of 

antennas. It may nevertheless be useful, because approximate 

results may be obtained without the need for a convolution.  
 

F.  Transient Antenna Pattern 

A transient antenna pattern is a plot of some feature of the 

impulse response as a function of angle. The total transient 

pattern includes information from both polarizations, and a 

partial transient antenna pattern includes information from a 

single polarization. The impulse response magnitude is related 

to its partial components by  

22
),,(),,(),,( ththth   


.       (9.9)  

It is simplest to characterize time domain waveforms in terms 

of norms of various types. The total transient antenna pattern 

and the two partial transient antenna patterns (in  and ) are  
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where (, ) = (0, 0) is antenna boresight, and  is a specified 

norm. While these patterns are normalized to boresight, that 

feature is optional. Partial transient antenna patterns could 

also be applied to circular polarization, as described earlier in 

Section IX.C.  

Since norms are essential to transient antenna patterns, we 

provide a brief review. Further information may be found in 

[5, 32, 33], or in any linear algebra textbook. The three criteria 

that must be satisfied by all norms are 
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The first equation states that the norm of a function can be 

zero if and only if the function is zero. The second equation is 

the linearity property, and the third equation is the triangle 

inequality.  

A useful class of norms are the p-norms, which are defined 

as 
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Three p-norms are commonly of interest. The 1-norm is the 

area of the rectified waveform. The 2-norm is proportional to 

the square root of the energy in the waveform. Finally, the ∞-

norm is the peak absolute magnitude of the waveform. In 

general, one is free to choose any norm, as long as it is clearly 

specified and it satisfies (9.11).  

A useful variant is the derivative p-norm, or Dp-norm, 

where  

pDp
tftf )()(  ,                          (9.13)  

and the prime indicates a time derivative.  

In some cases, one might wish to characterize the pattern in 

terms of the transmitting impulse response, F(t), instead of the 

receiving impulse response, h(t). This can be accomplished by 

applying a derivative norm to the receiving impulse response, 

and multiplying by )2/(1 v . (This is obvious when one 

recalls the self-reciprocity law, )2/( vhF  .) To avoid 

confusion, the norm should always be specified as it applies 

to the receiving impulse response, h(t).  
 

Once a transient antenna pattern has been established, one 

can consider other terms that characterize this pattern; such as 

transient beamwidth, t; and transient sidelobe level, SLLt. 

In all cases, it is necessary to specify the polarization (, , 

RCP, LCP, or total magnitude), pattern cut, norm, and whether 

or not the pattern has been normalized to boresight. In the case 

of transient beamwidth, it is also necessary to specify the level 

at which the beamwidth is taken, for example, 3 dB below 

peak.  
 

G.  Bandwidth 

Antenna bandwidth is [1] “The range of frequencies within 

which the performance of the antenna conforms to a specified 
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standard with respect to some characteristi.” It will be helpful 

to establish bandwidth standards for two antenna 

characteristics that are fundamental to power wave theory. 

First, reflection bandwidth, fr. is the frequency range over 

which the reflection coefficient magnitude, |
~

| , is below a 

specified level (perhaps defaulting to –10 dB, unless specified 

otherwise). (This is sometimes called impedance bandwidth, 

although that term does not appear in [1]. However, 

impedance bandwidth may be confusing in antennas with 

waveguide feeds, in which impedance is ill-defined.) Second, 

transfer bandwidth, ft, is the frequency range over which the 

magnitude of the transfer function, |
~

| h , is above a specified 

level (perhaps defaulting to 3 dB below its peak value, unless 

specified otherwise). Dominant polarization on boresight is 

assumed, unless specified otherwise.  
 

H.  Group Delay 

An impulse response may be separated into its magnitude 

and phase as  

)()(
~  jehh  ,                      (9.14) 

where s = j . From this, the group delay, tg, is just  
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This is a measure of the spreading of a signal over time as a 

function of frequency. If an antenna has an impulse response 

that can be approximated by a Dirac delta function over its 

mid-band frequency range (as in Section IX.D), it has a group 

delay that is nearly flat and close to zero over a wide band of 

frequencies.  

X. CANDIDATE STANDARD ANTENNA TERMS 

 We summarize here a collection of new terms that should 

be considered for inclusion in the antenna definitions standard 

[1].  

 port reference impedance, Zo1  

 port reference impedance array in an antenna array of N 

elements, Zo1,...,ZoN 

 medium characteristic impedance, Zo2, or in an antenna 

array of N elements, ZoN+1 

 velocity of propagation in the medium, v 

 antenna input impedance, inZ
~

 and Zin(t) 

 antenna input impedance in an array of N elements, 

inNinin ZZZ
~

...,,
~

,
~

21 , and )(...,),(),( 21 tZtZtZ inNinin  

 source and received power waves, 

recrecsrcsrc tt 
~

),(,
~

),(
 

 incident power flux density wave, 

),(
~

),,,(   incinc t


 

 radiated radiation intensity wave, 

),(
~

),,,(  radrad t


 

 reflection impulse response, (t) 

 reflection coefficient, 
~

 

 reflection impulse response in an array of N elements, 

(t), (t), …,N(t) 

 reflection coefficient in an array of N elements, 

N
~

...,,
~

,
~

21  

 receiving impulse response (or simply impulse 

response), ),,( th 


 

 receiving transfer function (or simply transfer function), 

),(
~

h


 

 transmitting impulse response , 

)2/(),,(),,( vthtF  


  

 transmitting transfer function , 

)2/(),,(
~

),(
~

vthsF 


   

 scattering impulse response, ),,,,( t 


 

 scattering coefficient, ),,,(
~

 


 

 mutual coupling impulse response in an antenna array, 

jitji  ),(  

 mutual coupling coefficient in an antenna array, 

jiji  ,
~

 

 raw TDR (Time Domain Reflectometer) response, 

TDRr(t) 

 compensated or clean TDR response, )(tTDRc  

 impulse integral, ha 

 total transient antenna pattern, ),( tP  

 partial transient antenna pattern, ),(,),(   PP  

 transient beamwidth, t 

 transient sidelobe level, SLLt 

 reflection bandwidth, fr,  

 transfer bandwidth, ft 

 group delay, tg()  

This list is just a starting point for the discussion – 

undoubtedly, more terms will emerge.  

 We emphasize that the transmitting impulse response 

provides no new information, once the receiving impulse 

response has been specified, along with the port and medium 

reference impedances and the propagation velocity in the 

medium. For that reason, we recommend that the receiving 

impulse response be given the second designation of simply 

“impulse response.” 

XI. DISCUSSION 

We have identified an antenna impulse response and 

transfer function that fully treat all cases that are currently 

handled by the standard definition of gain. We summarize 

here the work that is left to do, and we also briefly compare 

our results to those of others.  
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The first issue that needs further investigation involves 

lossy media. Antenna gain, realized gain, and radar cross 

section are defined only for antennas embedded in lossless 

media, so we have limited our scope to that case. For low-loss 

material, one typically calculates gain for an antenna 

embedded in a lossless material, and adds propagation loss 

afterward. This approach is likely to work well in low-loss 

media, but it may not work well in materials with higher 

losses. A more rigorous solution might be to allow a complex 

2
~

oZ  in our formulation. Further study is needed in order to 

establish when this effect matters, and how best to deal with 

it.  

A second issue worth further investigation concerns circular 

polarization. It is straightforward to write the equations in the 

frequency domain, as we have done in Section IX.C, however, 

it will require further work to interpret the meaning of the 

results in the time domain.  

A third issue that requires further investigation involves 

initial conditions in the source or load circuit. This might 

include initial voltages on a capacitor or initial currents on an 

inductor. Laplace transforms handle initial conditions well, so 

one should be able to apply to this case the usual methods 

developed for transient circuit theory.  

Finally, we wish to briefly compare our results to earlier 

papers, and identify the advances that have been made. Our 

formulation leads to an obvious choice of antenna impulse 

response, h(t). One can find functions proportional to h(t) in 

most of references [4-19]. One part of the challenge lies in 

recognizing the scale factor that generates the simplest 

possible equations, and treats all cases of interest. Our 

approach is to normalize electric fields and voltages to the 

square root of the local reference impedance, and a number of 

authors have adopted this approach [14, 15, 34, 35]. This 

scaling is important, because it leads to a simple and general 

form of the antenna self-reciprocity law, )2/( vhF  . 

However, we treat more cases, including mismatched sources 

and loads, waveguide feeds, and media with arbitrary real 

characteristic impedance. The concept of power waves is 

particularly well suited to characterizing circuits containing 

waveguides, in which impedances are ill-defined, but 

reflection coefficients are available. Our approach also leads 

to an obvious definition of mutual coupling coefficient in 

antenna arrays, which is a significant advance in frequency 

domain antenna theory. Because we treat additional cases, our 

theory for the first time treats all the cases that are treated by 

the current definition of antenna gain. This is a critical 

requirement for establishing standard terminology in the time 

domain.  

XII. CONCLUSIONS 

We have introduced here the power wave theory of 

antennas, which addresses the problem of characterizing 

antennas in the time domain, using equations that are as 

simple as possible (eqns. (6.1) and (6.3)). We have defined a 

number of impulse responses of antennas that, taken together, 

fully extend into the time domain the concepts of gain, 

realized gain, effective length, antenna pattern, beamwidth, 

radar cross section, and scattering cross section. We have 

defined antenna impulse response in such a way that it treats 

all cases that are currently treated by gain. Some further work 

will be useful, as is summarized in Section XI.  

 Our formulation also clarifies antenna performance in the 

frequency domain in two ways. It provides a rigorous 

definition of the mutual coupling coefficient in antenna arrays. 

It also clarifies the concept of antenna bandwidth.  

A principal result of this work is that we have identified a 

fundamental relationship between the transmitting and 

receiving impulse responses, )2/( vhF  , the law of 

antenna self-reciprocity. Since this is true of all linear 

antennas that have no nonreciprocal components, it is 

unnecessary to provide both transmitting and receiving 

impulse responses – a single one will do. It is most convenient 

to establish the receiving impulse response as the default, for 

reasons that are explained in Section VIII.  

The goal of this work was to simplify the antenna equations 

to the point where definitions could be agreed upon for 

inclusion into the antenna definitions standard [1]. Doing so 

would aid in characterizing the performance of antennas, 

especially in the time domain. In Section X we suggested 

about 30 new terms for inclusion in [1], and we hope they will 

be carefully considered.  
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