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Abstract 
 
 
Lens material is selected and evaluated for a scale model Half Impulse Radiating Antenna 
(HIRA).  Techniques for measuring the complex permittivity of the lens material are compared 
and evaluated.  The high voltage break down of the lens material is evaluated.  The design of the 
high voltage feed is modeled and its impedance profile measured by time-domain-reflectometry.  
A scale model of the complete HIRA is built and tested for impedance and field radiation 
characteristics.  The most important result of these tests is that a full-scale high-voltage HIRA is 
feasible. 
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1 INTRODUCTION 

1.1 OVERVIEW 
In support of the continuing effort to develop a Half Impulse Radiating Antenna (HIRA), 

a second scale-model HIRA was fabricated and tested.  The design, testing and fabrication of the 
first scale-model HIRA are described in [1]. The first scale-model was a simple 30 cm diameter 
parabolic reflector with two radiating elements.  The second scale-model differs from the first by 
the addition of a lens and the scaled simulation of a high-voltage coaxial feed system.  The 
purpose of this effort is to evaluate the HIRA with the new lens and high voltage modifications. 

1.2 PROCEDURES 
To evaluate the high-voltage and lensed HIRA, we first selected a suitable dielectric 

material for the lens.  Since the lens was designed using a dielectric constant of seven, we 
selected epoxy mixed with titanium dioxide (TiO2) for the lens material.  TiO2 has a dielectric 
constant of about 90, and epoxy has a dielectric constant in the 3 to 4 range.  The first objectives 
were to find the proper mixture and to develop mixing and curing techniques.  Conveniently, we 
found a commercially available mixture with a dielectric constant of seven.  We then tested the 
high voltage standoff of the material. 

After selecting the lens material and developing curing techniques, we fabricated a scale 
model of the high-voltage HIRA with lens.  This model was used to determine the impedance 
profile and radiation characteristics of the HIRA.  Portions of the model were modified to reduce 
impedance discontinuities. 

We then drove the completed scale model HIRA with a fast step and measured the 
resultant field. We compared the output with the results of previous scale model measurements 
and with the theoretical field. 
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2 SCALE-MODEL HIRA DESCRIPTION 

A photograph of the completed scale-model HIRA is shown in Figure 2-1. 

 
Figure 2-1:  Photograph of HIRA. 

2.1 PARABOLIC REFLECTOR 
The reflector is a 30.48 cm (12 in.) diameter, spun aluminum parabola with a focal length 

to diameter (F/D) ratio of 0.25.  This reflector size was selected for its availability and reasonable 
size ratio to the full-scale HIRA.  The full HIRA will have same F/D ratio but will be 1.83 m 
(6 ft) in diameter, making the 30.48 cm reflector a 1/6-scale model.† 

Since only one-half of the reflector is used, the scale-model parabolic dish is split by a 
ground-potential divider plate.  The half of the HIRA containing the feed mount is inactive on 
the scale-model and will not exist on the full HIRA.  The active half contains the radiating 
elements.  Figure 2-2 shows a front view of the HIRA.  In this figure, the inactive half of the 
parabolic reflector is omitted. 

                                                 
† Originally, the full HIRA was to have had a 3-meter reflector, for which the model reflector would have been 
approximately 1/10-scale.  As it is, the reflector and radiating arms are now 1/6-scale, while the lens and its coaxial 
feed are 1/10-scale.  This difference in scale is not significant to the performance of the model. 
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Figure 2-2:  Diagram of the HIRA. 

2.2 RADIATING ELEMENTS 
The two radiating elements, visible on the radiating side of the divider plate in Figure 

2-1, originate at the parabolic focal point and form a 90 degree angle with each other and a 45 
degree angle to the divider plate.  The elements lie in the plane formed by the focal point and the 
parabola’s rim. 

Figure 2-3A shows a simplified drawing of the radiating elements and their reflections in 
the ground plane (divider plate). This is the physical configuration of HIRA, where terminal 1 is 
driven with respect to the ground plane.  Terminal 2 is the reflection of terminal 1 in the ground 
plane. 
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Figure 2-3: Radiating elements and their reflections in the ground plane. 
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Examination of Figure 2-3 reveals that driving terminal 1 with respect to terminal 2 in 
Figure 2-3A is identical to driving the parallel combination of terminal 3 with respect to 4 and 
terminal 5 with respect to 6 in Figure 2-3B.  Thus the impedance of the system may be 
considered to be the parallel combination of two antennas.  For convenience, each physical 
element with its associated reflection will be referred to as a conic antenna (e.g. the physical 
cone associated with terminal 3, and the reflection associated with terminal 4) to differentiate it 
from a true biconic antenna. 

Each conic antenna, formed by one physical element and the reflection of the other 
physical element, is the equivalent of a physical cone normal to a ground plane. It has one half 
the impedance of a true biconic antenna formed from two physical cones.  The desired 
impedance at the origin of the two elements is 100 ohms with respect to the ground plane.  Since 
the impedance at the origin of the two elements is the equivalent of the parallel impedance of 
two conic antennas, the desired impedance of each conic antenna is 200 ohms. 

The impedance of a conic antenna, normal to a conducting plane is given by: 















=

2
cotln

2
377 α

πconeZ ,    (2-1) 

where: 
∀ = cone half-angle. 

Solving (2-1) for ∀, we obtain: 














=







 −

60arctan2
coneZ

eα .    (2-2) 

The desired impedance for the parallel combination of the HIRA radiating elements is 100 ohms.  
Each conic antenna is 200 ohms.  Setting Zcone = 200 ohms, we find ∀ = 4.09 degrees. 

Figure 2-4 shows the design details for the scale-model radiating elements. For structural 
strength, the origin of the radiating elements does not terminate in a point. The 4.09 degree half-
angle is maintained well past the focal point of the parabolic reflector. At some distance from the 
focal point, the 4.09 degree taper stops to allow the elements to narrow to the 200 ohm resistive 
termination at the reflector rim.  The angle of narrowing is not critical and primarily keeps the 
element diameters from growing too large.  There is also an impedance consideration, as 
discussed later in Section 5.5. 
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Figure 2-4:  Detail of radiating element. 
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2.3 COAXIAL FEED SECTION 

2.3.1 Description 
A cut-away view of the coaxial feed section of the HIRA is shown in Figure 2-5.  The 

aluminum housing and brass center conductor, separated by Teflon dielectric, form a 68 ohm 
coaxial transmission line with an SMA connector at the bottom, and a lens at the top.  The 
curvature of the lens is exaggerated in the figure, but the ellipsoidal surface of the Teflon is 
accurate.  The Teflon, with a dielectric constant of 2.1, is a good simulation of the insulating oil, 
which has a dielectric constant of about 2.2. 

Teflon
Dielectric

Aluminum
Housing

0.320"

0.060"

Brass
Center
Conductor Lens

 
Figure 2-5:  Coaxial feed section and lens mount. 

2.3.2 Fabrication 
An aluminum block forms the flared lens mount and the outer conductor of the 68 ohm 

coaxial feed section.  The center conductor of the coaxial section is a brass rod, soldered to the 
center pin of an SMA connector.  Teflon forms the dielectric for the feed section.  The Teflon 
dielectric is machined, then press fit around the center conductor and into the aluminum housing.  
At the lens end, the Teflon is machined into an elliptical termination.  The brass center 
conductor, the conic flare of the aluminum housing, the lens, and the elliptical Teflon end form 
the launch structure.  The scale-model launch structure differs from the full-scale launch 
structure in that the scale-model center conductor is a simple cylinder, while the full-scale center 
conductor will be notched and tapered within the lens material.  In Section 5 of this note, we 
discuss the impedance and shape of the center conductor within the lens material of the launch 
structure. 
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2.4 LENS 

2.4.1 Description 
Figure 2-6 shows a cut-away drawing of the lens.  Rotating the drawing about the z-axis 

generates the solid lens.  The divider plate lies in the z = 0 plane.  Figure 2-7 is a photograph of 
the finished lens with the radiating-elements soldered to the brass center conductor. 
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Figure 2-6:  Scale-model lens. 

 

 
Figure 2-7:  Scale-model lens and radiating element attachment point. 
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2.4.2 Fabrication 
To form the lens blank we used an epoxy based paint, White-Standard #22-18000, 

manufactured by Ferro Corporation.  The paint is a mixture of Shell EPON 828 epoxy resin, and 
TiO2 (titanium dioxide) pigment; it is 60% TiO2, by weight.  The paint is hardened with Shell 
TETA hardener, 13% by weight of the resin (5.2% by weight of the premixed paint). 

The lens blank is fabricated by pouring the paint/hardener mixture into an oversize 
cylindrical mold placed on top of the lens mount assembly shown in Figure 2-5.  The aluminum 
housing, brass center conductor, and Teflon dielectric form the lower half of the lens mold. The 
mixture fills the conic section and forms a lens-disk blank on the mount assembly. In order to 
reduce voids in the lens blank, the mixture is vacuumed as it cures, to remove trapped air and 
reaction product gases.  The cured TiO2-epoxy mixture is referred to as “lens material” within 
this note.† 

Finally, the exposed surface of the cured lens blank is machined into the shape defined by 
the quartic equation given in [2]: 

( ) 22
2

2
21

2
1 zzr +Ψ+−=





 +−+Ψ+−ε ,   (2-3) 

where the dimensional parameters of (2-3) are defined in Figure 2-6, and εr is the relative 
permittivity of the lens material. 

2.5 TERMINATION 
The radiating elements of the full-scale HIRA will be terminated using eight Dale NS-10, 

wire-wound, 100 ohm resistors.  Two parallel strings of four resistors in series will comprise the 
termination.  To simulate the full-scale termination, the scale-model HIRA is terminated with 
four RN55 metal film 200 ohm, 1/8 watt resistors., arranged in two parallel strings of two 
resistors in series.  Figure 2-8 is a photograph of the scale-model resistor termination. 

 
Figure 2-8:  Scale-model radiating element termination. 

                                                 
† No measurements were made on uncured materials. 
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3 COMPLEX PERMITTIVITY MODEL 

3.1 INTRODUCTION 
It is instructive to model the complex permittivity of the lens material based on the theory 

of relaxation processes.  From [3]: 

“Relaxation is a process.  The term applies, strictly speaking, to linear systems where a response 
and a stimulus are proportional to one another in equilibrium.  Relaxation is a delayed response to 
a changing stimulus in such a system.  Dielectric relaxation occurs in dielectrics, that is in 
insulating materials with negligible or small electrical conductivity.  The stimulus is almost 
always an electric field, the response a polarization.  The time lag between field and polarization 
implies an irreversible degradation of free energy to heat.” 

In [4], V. V. Daniel tells us that relaxation is a property of a passive network or system.  
This results in several interesting and equivalent properties of the system: 

1.  The passive character of the network requires that the responses decay with 
time, and hence all the critical (natural) frequencies of the system must have a 
negative real part.  The poles of the natural frequencies must lie in the left half of 
the complex frequency plane.  This condition is referred to as the stability 
requirement, which follows from the fact that the transient response of a passive 
system must die out.  The natural behavior cannot grow without limit. 

2.  A system cannot have a stable response (one that will not take off on its own) 
unless the pertinent system function (dielectric permittivity in our case) is analytic 
in the right half of the complex frequency plane. 

3.  The system must also be causal:  a response cannot occur before the stimulus 
is applied. 

The real and the imaginary parts of the natural frequency response of a passive system 
form a Hilbert transform-pair.  If either component is known over all frequencies, the other can 
be calculated exactly. 

3.2 MODEL 
The complex permittivity of a dielectric may be defined in terms of the (complex) 

incident electric field and the static “dipolar” polarization as: 

ε ω ε π
ω
ω

b g b g
b g= +∞ 4

P t
E t

D

inc

,
,

,     (3-1) 

where ε, P, and E are complex quantities and ε ∞ = n2  defines the optical dielectric constant.  
The polarization can usually be approximated by a single relaxation time, τ , giving for the case 
of zero initial polarization: 

ε ω ε ε ε
ωτ

b g = +
−

+∞
∞s

j1
,     (3-2) 
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where ε s  is the static (low frequency) dielectric constant.  This is the Debye equation. It can be 
separated into real and imaginary parts as: 

ε ε ε= ′ − ′′j ,       (3-3) 

where 

′ = +
−

+
∞

∞ε ω ε ε ε
ω τ

b g s
1 2 2 ,     (3-4) 

and 

′′ =
−

+
∞ε ω

ε ε ωτ

ω τ
b g b gs

1 2 2 .      (3-5) 

These are shown in Figure 3-1, for values of εs, ε∞, and τ  that approximate the results of the 
measurements.† 
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Figure 3-1: Complex permittivity of the lens material (Debye model). 

                                                 
† The solid line is the real part; the broken line is the imaginary part.  We follow this convention is throughout the 
remainder of this note. 
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The propagation coefficient of an electromagnetic wave in the lens material is : 

γ ω α β ω ε ωb g b g= + =j j
c

,     (3-6) 

where c is the speed of light, and α and β are real functions of ω.  The real and imaginary parts 
of the propagation coefficient (in units of inverse meters) are presented in Figure 3-2. 
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Figure 3-2:  Propagation coefficient of the lens material (Debye model). Units of the coefficient 

are inverse meters. 

The propagation of a field through a given length, , of material is defined by: 

E E, eω ω γ ωb g b g b g= −
0 .     (3-7) 

The real part of the exponent gives the attenuation of the signal at each frequency, and the 
imaginary part gives the phase delay. 

The time domain results for our model, obtained from (3-7) by application of the inverse 
Laplace transform, are shown in Figure 3-3 for several lengths of lens material.  The bell-shaped 
curve for each length is the impulse response function for that length.  It is the response to a 
delta-function impulse at t = 0.  The step response functions would be the integrals of the 
impulse response functions.  The time at which the response occurs is the propagation time 
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through that length of dielectric.  The vertical dashed line in each curve is the calculated delay 
based upon the initial (static or low-frequency) dielectric constant (7.0), as: 

t
cD s= ε .      (3-8) 
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Figure 3-3:  Impulse response functions of the lens material. 

The peak of each curve occurs almost exactly at the theoretical delay time predicted by 
the static dielectric constant. The response widths (in nanoseconds) can be quantified by the full-
width-at-half-maximum (FWHM), as indicated by the width of the dashed box within each 
curve. The following table lists the pulse delay and width data depicted in Figure 3-3. It shows 
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that the pulse delay varies linearly with path length, while the pulse width varies as the square 
root of the path length.† 

Tabulation of the information presented in Figure 3-3 
(τ = 5 ps,  εs = 7,  ε  = 2) 

Length (L) Delay (D) D/L (D/L)/mean FWHM (W) W/(L1/2) (W/L)/mean 
0.01 0.08728 8.72800 0.99316 0.01648 0.16480 0.98742 
0.02 0.17520 8.76000 0.99680 0.02380 0.16829 1.00834 
0.05 0.44010 8.80200 1.00158 0.03723 0.16650 0.99759 
0.1 0.88070 8.80700 1.00215 0.05310 0.16792 1.00609 
0.2 1.76300 8.81500 1.00306 0.07507 0.16786 1.00576 
0.3 2.64500 8.81667 1.00325 0.09094 0.16603 0.99480 

       
sum  52.72867   1.00140  
mean  8.78811   0.16690  

 

3.3 CONCLUSIONS 

The implications of these complex permittivity modeling results for the HIRA lens are: 

1. The maximum path length through the lens is about 10 cm.  The impulse response 
function through this path will be about 52 ps. 

2. The minimum path length through the lens is about 3 cm.  The impulse response 
function through this path will be about 30 ps. 

3. Convolution of the 30–50 ps response function with a pulser waveform having a 
risetime in excess of 100 ps will degrade the measured risetime by at most ten 
percent. 

                                                 
† The observed relationship between impulse response width and propagation length differs from that which 
characterizes high-frequency skin effects in coaxial cable conductors, where the width of the impulse response is 
proportional to the propagation length. In that case, the real part of the propagation coefficient is proportional to the 
square root of the frequency and the imaginary part is directly proportional to frequency (γ ω ω∝ +a jb ). Here, 
we are concerned with the portion of the permittivity curve (Figure 3-1) below 10 GHz, where (for a relaxation time 
constant of 0.5 ps) the real part of the Debye permittivity, (3-4), is constant to first order, and the imaginary part, 
(3-5), increases linearly with frequency.  In this frequency regime, Figure 3-2 shows that the real part of the 
propagation coefficient increases as the square of the frequency, while the imaginary part increases linearly with 
frequency (γ ω ω∝ +a jb2 ). The difference in the frequency dependence of the real parts of the propagation 
coefficients explains the observed pulse-width-propagation-length behavior. 
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4 PERMITTIVITY AND PROPAGATION COEFFICIENT 

4.1 BACKGROUND 
Two indirectly measurable quantities are important for the lens material.  First, the ray 

optics design requires a lens material with a dielectric constant (real part of the permittivity) very 
close to seven.  Second, the lens material must have a low attenuation constant in order to 
maximize the energy propagation.  In terms of the permittivity, the real portion must be close to 
seven, and the imaginary portion must be close to zero.  Since the lens will not have perfect 
transmission, there will be some imaginary component to the permittivity. 

4.2 TEST APPROACH 
The permittivity of the lens material was measured by using it as the dielectric material in 

a coaxial test fixture.  By a TDR measurement of the fixture, the real portion of the permittivity 
can be determined from either the reflection coefficient, rho (ρ ), or from the velocity of 
propagation through the fixture.  Information on the imaginary portion of the permittivity is 
contained within the risetime of the reflected pulse. 

4.3 INSTRUMENTATION 
We used the Tektronix 11801B digital sampling oscilloscope with the SD 24, 20 GHz, 

dual-channel, TDR sampling head to measure the sample of lens material.  The coaxial test 
fixture containing the sample was always connected directly to the SD 24 head, with no 
intervening cable. 

4.4 COAXIAL TEST FIXTURE 
A simplified drawing of the coaxial test fixture used to measure the lens material is 

shown in Figure 4-1. The 18.1 cm (7.125 in.) air-filled input section on the left forms a 50 ohm 
coaxial reference line.  This 50 ohm section has a type N input, as shown on the left in the figure.  
The 50 ohm section may be terminated at its open end with either a machined brass shorting 
disk, or the test cell.  The test cell is shown on the right of the figure.  This cell may be left empty 
or filled with lens material.  When filled, the exposed end of the lens material is machined flush, 
so that the cell remains 14.99 cm (5.902 in.) long.  This cell length gives a 1.0 ns round-trip 
transit time in air.  Thus, the round-trip time in nanoseconds is numerically the square root of the 
relative dielectric constant of the material filling the test cell. 

7 . 1 2 5 "

.404 Brass Rod.930 ID Brass tube

Air filled 50 ohm section

5 . 9 0 2 "

Test Cell Short  
Figure 4-1:  Coaxial test fixture. 
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4.5 TYPICAL TDR DATA 

4.5.1 Permittivity Calculated from the Measured Reflection Coefficient 
Figure 4-2 shows typical TDR data for the test fixture. The upper trace is for the air-filled 

input section terminated with the machined brass short.  The lower trace is for the complete test 
fixture, with lens material filling the test cell. 
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reflection from the short terminating
the lens-material filled test cell

 
Figure 4-2:  Typical TDR data for the coaxial test fixture. 

The baseline, at ρ = 0, represents the 50 ohm air-filled section.  The reflection from the 
short (top trace) has been inverted for clarity of presentation. The measured reflection coefficient 
is negative one.  The reflection data from the test cell (filled with lens material) display two 
negative-going steps.  The first step, from ρ = 0 to ρ = -0.45, is the reflection at the interface 
between the air-filled section and the lens material filling the test cell.  The second, rounded step 
is the reflection from the brass short terminating the test cell.  A multiple reflection within the 
test cell is apparent at the end of the trace (positive-going, rounded step). 

We now seek an expression for the permittivity of the lens material in terms of the 
measured test cell reflections. The impedance, Z, of a coaxial structure may be found in any 
tranmission line handbook as: 
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where: 
Z0 = 377 ohms, 
D = outer conductor diameter, 
d = inner conductor diameter, 
εr = relative permittivity of material filling the line (lens material). 

The reflection coefficient, ∆, at a boundary between regions of differing impedance is given by: 

21
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=ρ ,      (4-2) 

where: 
Z1 = input side impedance (50 ohm air line in the test fixture), 
Z2 = output side impedance (lens material in the test fixture). 

For the air-filled test fixture, Z1 in (4-2) is 50 ohms, as calculated using (4-1) and the 
construction shown in Figure 4-1.  Z2 is derived from the measured quantity, ∆, by solving (4-2) 
for Z2 and setting Z1 to 50 ohms: 
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By equating (4-1) and (4-3), and solving for ,r, we obtain the following equation, which allows 
the relative permittivity of the lens material to be calculated from its reflection coefficient as: 
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By applying (4-4) to the reflection coefficient data for the test cell filled with lens 
material, we obtain the dielectric constant for the lens material, as shown in Figure 4-3.  This 
figure shows that the measured reflection coefficient of -0.45 (see Figure 4-2) corresponds to a 
lens material relative permittivity of about 7.0. 
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Figure 4-3:  Dielectric constant determined from the reflection coefficient. 
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4.5.2 Permittivity Calculated from the Transit Time 
The permittivity is also related to the round-trip transit time of the TDR pulse through the 

test cell.  It is calculated from: 
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where: 
εr = relative permittivity of the lens material, 
vp = velocity of propagation through the lens material, 

 = length of the test cell (14.99 cm), 
c = speed of light in vacuum (29.98 cm/ns), 
t = round-trip transit time though the test cell (nanoseconds). 

Figure 4-4 shows the derivative of the test cell TDR measurement.  The time between the 
negative peaks of the derivative gives a round-trip transit time of about 2.56 ns, which 
corresponds to a permittivity of 6.5.  Note the noise introduced by numerical differentiation of 
the data. The noise is most apparent at late times where the original measurement is at its lowest 
value.  In later data, this problem is mitigated by averaging repeated measurements. 
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Figure 4-4:  Dielectric constant determined from transit time. 

The accuracy of the dielectric constant, as calculated from the transit time through the 
test cell, depends on our ability to select comparable measurement positions on the negative 
peaks of the TDR derivative.  Although the error in the dielectric constant is proportional to the 
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square of the measurement error, the difference between the previously measured value (εr = 7) 
and the current value (εr = 6.5) is too great to attribute solely to a combination of measurement 
and analysis errors.  The probable explanation for the apparent discrepancy is that the value, 
εr = 7, results from a low frequency measurement (dc value of ρ), while the value, εr = 6.5, 
results from a high frequency measurement (the transit time of the leading edge of the TDR 
pulse).  Measurement of the complex permittivity in the frequency domain, as discussed below, 
supports this conclusion. 

4.5.3 Complex Permittivity Measured from the First Reflection 

4.5.3.1 Equation Derivation 
The relative complex permittivity of the lens material, εr, defined by (3-3) in terms of real 

and imaginary parts as ′ − ′′ε εj , can be obtained from three reflectivity measurements, all made 
at the input of the coaxial test cell.  Although we shall see that just two measurements are 
sufficient with our test cell geometry, Figure 4-1, we begin with the more general approach. 

The first measurement is of a short at the input of the test cell.  This gives the response of 
the TDR system and drive cable.  We will need to deconvolve this response from the other 
measured test cell responses.  We used a step TDR to obtain the waveform, ρ0 tb g , and we 
calculated the derivative, ′ρ0 tb g , to obtain the impulse response. 

The second measurement is of the empty (air-filled) input of the test cell.  This 
measurement produces a reflection coefficient, ρ1 tb g, which is a step function with finite 
risetime. We calculate the derivative of this waveform to obtain ′ρ1 tb g, which is the convolution 
of the system impulse response with the impulse response of the air-filled test cell, ρ A tb g: 

′ = ⊗ ′ρ ρ ρ1 0t t tAb g b g b g.     (4-6) 

The frequency domain response of the air cell to a delta function excitation is ρ ωAb g , the fast 
Fourier transform (fft) of ρ A tb g: 
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    (4-7) 

The third measurement is obtained with the test cell filled with lens material.  The input 
section is now terminated by lens material.  This leads to ′ρ2 tb g  and ρ L tb g, and to expressions 
analogous to (4-6) and (4-7), where ′ρ2 tb g  is the convolution of the system impulse response with 
the (first reflection) impulse response, ρ L tb g, of the lens-material-terminated input section. 

The reflection coefficient at the input of the test cell is related to the impedance 
discontinuity there by 

Z Zi=
+
−

1
1

ρ ω
ρ ω
b g
b g ,      (4-8) 
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where Zi is the complex, frequency-dependent impedance of the air-filled input section.  Since 
the impedance of the test cell section is inversely proportional to the square root of the 
permittivity of the fill material, and since the relative permittivity of air is unity, we obtain the 
following expression for the complex relative permittivity of the lens material: 

ε ω ε εr A Lj Z Zb g b g= ′ − ′′ = 2,    (4-9) 
where, from (4-8), 
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Thus, from (4-7) for ρ ωAb g , and the analogous expression for ρ ωL b g, we finally obtain: 
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where: 
ε ′  =  real part of the relative permittivity, 
ε ′′  =  imaginary part of the relative permittivity, 
ρ ′0  =  derivative of the reflection coefficient of the shorted, air-filled input section, 
ρ ′1  =  derivative of the reflection coefficient of the shorted,  air-filled test cell, 
ρ ′2  =  derivative of the reflection coefficient of the shorted, lens-material-filled test cell. 

For the test fixture used to measure the lens material (Figure 4-1), the air-filled 50 ohm 
input section is identical to the air-filled input of the test cell.  The reflection coefficient, ρ1, is a 
constant; so its derivative is zero.  Thus, (4-11) reduces to: 
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This result suggests that a measurement of the reflection of the input step at a perfect short, 
combined with a measurement of the reflection of that same step from the lens material, are 
sufficient to determine the permittivity of the lens material. 

4.5.3.2 Data 
Figure 4-2 shows the recorded reflection coefficients corresponding to (4-12).  The 

shorted, 50 ohm air-filled input section, corresponding to ρ0, is the positive (inverted) trace.  
The test cell filled with lens material, corresponding to ρ2 , is the negative, stepped trace. 

Differentiating and windowing ρ0 and ρ2  results in Figure 4-5.  The differentiation 
forces both traces to return to zero to allow Fourier transformation.  The time-gating window 
(not shown at its true magnitude of unity) removes both the first reflection (the step from ρ = 0 to 
ρ = -0.45) and spurious baseline noise, by setting all data outside the window to zero. 
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Figure 4-5:  Derivatives of shorted input and lens material TDR measurements. The time-gating 
window was used to suppress irrelevant data. 

By Fourier transforming the two derivatives shown in Figure 4-5, and applying (4-12), 
one generates the complex permittivity.  The real and imaginary parts of the complex 
permittivity are shown in Figure 4-6.  In the figure, the real portion of the permittivity is the top 
trace, near the value of 7.1, falling slightly as frequency increases.  Note that the low-frequency 
permittivity shows good agreement with the value obtained from the reflection coefficient, and 
the high-frequency permittivity falls off to about the value obtained by the transit-time 
measurement.  The imaginary part of the permittivity starts near zero, rising as frequency 
increases.  However, it rises much more rapidly than the Debye model (see Section 3, Complex 
Permittivity Model) predicts. We believe this to be a result of a measurement problem, as 
discussed below. 
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Figure 4-6:  Real and imaginary permittivity, derived from the first reflection. 

There is a problem with this permittivity measurement.  The information is derived from 
only the initial reflection from the air-lens-material boundary.  Since this reflected wave has not 
traveled through the lens material, the information it contains arises only from the degradation of 
the risetime.  Unfortunately, the degradation is so small that the 11801B cannot accurately 
distinguish the difference between the risetime of the reflection from the shorted input section 
and the risetime of the reflection from the lens-material. 

To demonstrate the problem with the measured risetimes, Figure 4-7 shows the derivative 
measurements of Figure 4-5, normalized, overlaid, and expanded.  Comparison of the full-width-
at-half-maximum (FWHM) of the two reflection derivatives in Figure 4-7 reveals that the 
risetimes are identical to within the measurement capability.  Thus, the risetime degradation due 
to passage through the lens material is below the measurement threshold, and the calculated 
imaginary component of the permittivity is meaningless.  The attenuation constant, α, cannot be 
determined. 
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Figure 4-7:  Risetime comparison of reflection from short and from lens material. 

4.5.4 Complex Permittivity Measured from the Second Reflection 

4.5.4.1 Equation Derivation 
The second reflection (occurring between three and four nanoseconds in the lens material 

in Figure 4-2) has a significantly slower risetime, as a result of its passage through the lens 
material.  The slow risetime suggests that we can recover the complex portion of the permittivity 
by using the second reflection.  The second reflection occurs when the TDR pulse crosses the 
air-to-lens-material boundary, reflects from the short terminating the test cell, and re-crosses the 
lens-material-to-air boundary.  Figure 4-8 illustrates the path. 
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Figure 4-8:  Second reflection path. 
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Here, the input pulse is normalized to unity within the 50 ohm input section.  Crossing the 
interface between the air and the lens material, the input pulse magnitude is multiplied by 
τ ρ= +1 2.  The pulse continues through the test cell, with complex propagation factor e−γ , 
until it is reflected out-of-phase by the shorted termination.  Retracing its path, the pulse again 
crosses the lens-material-to-air interface, where it is multiplied by τ ρ= −1 2. 

Two simplifying assumptions are in order.  First, the brass short terminating the test cell 
is a perfect reflector, producing a reflection coefficient of negative one.  Second, the reflection 
coefficient, ρ2 , is frequency independent.  This second assumption is valid for our 
measurements, because (as shown in the preceding section) the difference between the measured 
risetimes for the shorted input section and the lens-material-terminated input section is too small 
to be measured. Given these two assumptions, the frequency response of the lens material 
becomes: 
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where: 
ρ2  =  constant reflection coefficient at the interface between the air and the lens material, 
    =  distance traveled by the pulse  (2 × 0.1499 m for the test cell). 

The frequency response is the Fourier transformation of the impulse response.  The input step is 
the negative of (the shorted input section measurement) ρ0, and the output step is (the lens-
material measurement) ρ3.  However, since both the input step and the lens-material step are 
reflected out-of-phase by the terminating short, the effect is as if neither were inverted.  Fourier 
transforming the derivative of the input and output steps and taking their ratio also yields the 
frequency response: 
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By equating (4-13) and (4-14), then solving for the propagation coefficient, γ, we obtain: 
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where: 
ρ2  =  constant reflection coefficient at the interface between the air and the lens material, 
ρ3 =  recorded reflection coefficient through the lens material, 
ρ0 =  recorded reflection coefficient of the shorted input section, 
   =  distance traveled by the pulse (2 x 0.1499 m for the test cell). 

Equation (4-15) says that measurements: of the reflection of the input step from a perfect 
short, of the reflection from the air-to-lens-material interface, and of the reflection from a perfect 
short at the termination of the lens material, are sufficient to determine the propagation 
coefficient, γ.  The complex permittivity is recovered from the propagation coefficient (3-6) as: 
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4.5.4.2 Data 
To make the most accurate measurement possible, we repeated the measurement shown 

in Figure 4-1 one hundred times.  Averaging these repetitions significantly reduced the numerical 
noise, which can otherwise dominate the differentiated trace.  The new data is shown in Figure 
4-9, with both traces inverted. 
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Figure 4-9:  Averaged test cell TDR data. 

The time-gated derivatives of the data in Figure 4-9 are shown in Figure 4-10.  Note that 
the numerical noise is no longer apparent.  The time between the two peaks, the two-way transit 
time, is still about 2.57 ns, corresponding to a high-frequency value for the dielectric constant of 
6.6.  This determination agrees well with previously calculated values. 
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Figure 4-10:  Time-gated derivatives of TDR data of input section and test cell. 
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Figure 4-11 displays the attenuation (real) and phase (imaginary) coefficients, α and β, of 
the complex propagation coefficient, γ, as calculated from (4-15).  The real propagation 
coefficient indicates that one meter of lens material would attenuate a pulse by less than one 
decibel at a frequency of one gigahertz. 
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Figure 4-11:  Propagation coefficient from second reflection. 
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Figure 4-12 shows the complex permittivity, as generated from (4-16). The low-
frequency dielectric constant is about 7.0; it drops to about 6.5 near 10 GHz.  These values for 
the dielectric constant, as calculated from the propagation coefficient, agree well with the 
previous measurements, thus validating the propagation coefficient derivation.  Above 10 GHz 
the measurement data are dominated by noise. 
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Figure 4-12:  Permittivity from second reflection. 

4.6 CONCLUSIONS 
The measured permittivity of the lens material varies from a low-frequency value of 7.0 

to a high-frequency value of 6.5, near 10 GHz.  For a pulse with a 100 ps risetime 
(corresponding to a bandwidth of about 3.5 GHz), the material will have a relative dielectric 
constant of about 6.6. 

At 3.5 GHz, the attenuation coefficient is about 3 dB/m.  For the proposed maximum lens 
thickness of about 8 cm, the attenuation will be about 0.25 dB. 
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5 SCALE-MODEL IMPEDANCE 

5.1 INTRODUCTION 
The scale-model lens mount shows a distinct impedance rise, followed by a drop, at the 

elliptically shaped transition from the coaxial input section to the lens (refer to Figure 2-4).  This 
impedance variation will cause undesirable reflections and reduce the energy transfer in the full 
HIRA.  We decreased the diameter of the scale-model center conductor in steps, in order to 
increase the impedance in this area and thus reduce the discontinuity.  We tested center 
conductors with three different minimum diameters: 1.55 mm (0.061 in.), 1.30 mm (0.051 in.), 
and 0.81 mm (0.032 in.). 

5.2 PHYSICAL STRUCTURE 
Figure 5-1 shows the structure of the scale-model mount, without the lens.  In this figure, the 

center conductor is 1.55 mm (0.061 in.), necking down to 1.30 mm (0.051 in.) where the center 
conductor leaves the elliptical termination of the coaxial section.  In another version of the 
mount, the diameter of the center conductor did not vary; it was 1.55 mm (0.061 in.).  In a third 
version, the center conductor necked down to 0.81 mm (0.032 in.) for approximately 2.5 mm 
(0.1 in.), then expanded back up to about 1.27 mm (0.050 in.). 

 

 
Figure 5-1:  Typical scale-model lens mount. 

 
The lens material blank is not shown in the figure.  In all three versions, lens material filled 

the conical space in the aluminum mount and extended, as a one-inch cylindrical lens blank, to 
just beyond the end of the center conductor.  The region of interest here is the volume filled by 
the lens material, i.e., the region from the elliptical end of the Teflon insert, to just past the 
aluminum mounting block. 
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5.3 THEORETICAL IMPEDANCE 
The impedance is given by the following equation, based on the coaxial geometry and 

assuming a dielectric constant corresponding to a homogeneous mixture of Teflon and lens 
material: 
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where: 
 

dLensMat  =  outer diameter of the lens material, 
dcc  =  outer diameter of the center conductor, 
dTeflon  =  outer diameter of the Teflon, 
εLensMat   =  dielectric constant of lens material, 
εTeflon  =  dielectric constant of Teflon. 

Figure 5-2 shows the theoretical impedance of the three scale-model lens mounts. 
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Figure 5-2:  Theoretical impedance of three scale-model lens mounts.  Simple coaxial geometry 
is assumed.  Minimum center conductor diameters are indicated. 

In this figure, zero is the start of the elliptical terminating section of the Teflon material.  
Up to that point, the impedance is a constant 67 ohms.  For all three mounts, the impedance 
increases for the next 3.3 mm (0.13 in.) to about 82 ohms, then decreases rapidly to 60 ohms at 
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about 4.8 mm (0.19 in.) where the center conductor exits the Teflon.  At this point, the end of the 
Teflon, the diameter of the center conductor varied from 0.81 mm (0.032 in.) to 1.55 mm 
(0.061 in.) for the three mounts.  The result of the impedance calculation is a narrow notch 
(always to 60 ohms), the height of which is determined by the impedance of the continuing 
aluminum conic section, the dielectric constant of the lens material, and the diameter of the 
center conductor. 

5.4 MEASURED IMPEDANCE 

We measured the impedance of all three lens mounts using the 11801B sampling 
oscilloscope configured with the SD 24 TDR sampling head.  Figure 5-3 shows the results.  The 
data in the figure have been windowed and filtered, and the input step has been deconvolved.  
Some of the ringing visible here results from the abrupt termination of the data. 
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Figure 5-3:  Measured impedance of three scale-model lens mounts.  Minimum center conductor 
diameters are indicated.

Note that the step output of the SD 24 TDR sampling head for the 11801B oscilloscope 
has a 30 ps risetime.  The physical length of the ellipsoid section of the Teflon is about 4.8 mm 
(0.19 in.), corresponding to a transit time of about 24 ps.  Over that time, the impedance rises to 
about 80 ohms, falls to about 60 ohms, then starts rising again.  This impedance variation occurs 
too quickly to be characterized by the 30 ps risetime of the TDR.  

This impedance variation appears in the figure from about 450 ps to about 510 ps.  The 
time lengthening is due to the later return of reflections traveling through the higher-dielectric-
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constant lens material, in addition to the effect of the TDR step risetime.  The transit time 
through the lens material is about 43 ps. 

The impedance notch, visible in Figure 5-2 for the 1.30 mm (0.051 in.) and 0.81 mm 
(0.032 in.) center conductor mounts, cannot be seen in the measured data.  The width of this 
notch is at most 0.5 mm (0.02 in.), corresponding to about 4.5 ps in the lens material.  This time-
duration is too short to be resolved by the TDR. 

5.5 RADIATING ARM IMPEDANCE 
The HIRA radiating elements are designed to have a combined impedance of 100 ohms.  

Each element, with the reflection of the other element, forms a structure with an impedance of 
200 ohms, so the impedance of the parallel combination of the two elements and their reflections 
is 100 ohms.  In Section 2.2 the half-angle of each cone was found to be 4.09 degrees.  The 4.09 
degree half-angle cannot extend to the parabolic reflector rim because the cone would intersect 
the reflector well before the rim.  For this reason, the elements must start narrowing so as to 
approach a point at the rim (refer to Figures 2-1 and 2-3). 

The narrowing of the radiating arms increases the biconic impedance; but, because the 
impedance of the HIRA structure starts decreasing, the two effects tend to cancel.  The structural 
impedance of the HIRA starts decreasing, because the field reflected by the parabolic dish is 
intercepted by the radiating elements, thus modifying the voltage and current in the elements, as 
discussed below. 

The radiating elements produce a spherical wave radiating from the biconic origin.  The 
origin is at the parabolic focal point, 7.6 cm (3 in.) from the parabolic vertex. The wave 
propagates outward from the origin.  At the parabolic dish, the electric field reflects out-of-phase 
and the magnetic field reflects in-phase.  The reflected field is intercepted by radiating elements, 
where the inverted electric field generates a voltage that tends to cancel the original driving 
voltage, and the in-phase magnetic field generates a current tending to reinforce the original 
driving current.  Thus, the impedance starts to decrease at a time corresponding the to that 
required to complete a round trip over the 7.6 cm distance from the origin to the vertex.  To 
oppose this impedance decrease, the taper of the radiating elements is reversed at a point 7.6 cm 
from the origin, thus increasing the biconic impedance. 

This impedance behavior can be seen in the TDR of the complete HIRA scale-model in 
Figure 5-4.  In this figure, the HIRA lens-material starts about 0.7 ns.  Shortly before 0.8 ns, the 
lens ends and the radiating elements start.  The TDR shows the biconic impedance to be about 
100 ohms, as expected, until 0.5 ns later (1.3 ns in the figure), when the impedance starts 
dropping.  The dropping impedance is caused by the reflected wave reducing the voltage-to-
current ratio in the radiating elements.  Finally the cones terminate in the 100 ohm resistive 
termination, apparent at 1.8 ns, where the impedance starts increasing. 
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Figure 5-4:  Impedance of the scale-model HIRA, including radiating elements. 

5.6 CONCLUSIONS 
The impedance rise to 80 ohms in the lens is real, unavoidable, and will occur in the full-

scale HIRA. 

The impedance drop to 60 ohms is real.  Reducing the center conductor diameter 
immediately following the elliptical oil dielectric section will make the impedance discontinuity 
so short in time that it will have negligible effect on the longer-risetime pulse of the final full-
scale configuration.  The discontinuity will probably be large enough to measure using the 
11801B SD 24 TDR sampling head. 

The impedance of the radiating elements will not be a constant 200 ohms.  The 
impedance will start diminishing after the round-trip time from the origin of the elements to the 
parabolic dish. This implies that the distance from the origin corresponding to this time is a 
reasonable place to start reversing the cone taper.  Reversing the taper at this point will tend to 
make the cone impedance more constant. 
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6 ELECTRIC FIELD MEASUREMENTS 
The original scale-model HIRA (without the lens) and the new scale-model HIRA (with 

the lens) were mounted on a ground-plane and driven with a voltage step.  The resultant electric 
fields were recorded.  The measured electric fields compare well, indicating that the lens and 
associated coaxial mount structure have no detrimental effect on the radiated fields.  Both 
measured fields compare well to the predicted field.   

6.1 EQUIPMENT SETUP 
Figure 6-1 shows the scale-model HIRA mounted on the 2.44 m (8 ft) long and 1.83 m 

(6 ft) wide aluminum ground-plane used to make the electric-field measurements.  The electric 
field is sensed by an EG&G, ACD-9, D-dot sensor.  Both the HIRA and the ACD-9 are mounted 
on the centerline of the ground-plane. 

Tektronix 11801B
Digital Sampling Oscilloscope

1.52 m (5 feet)

Model 4600
Pulse Generator

Picosecond Pulse Labs

2.44 m (8 feet)

1.83 m X 2.44 m (6 feet X 8 feet) aluminum ground-plane

Scale-model HIRA

Sensor
ACD-9 D-dot

 
Figure 6-1:  Scale-model E-field measurement instrumentation. 

A Picosecond Pulse Labs (PPL) model 4600 generator drives the HIRA with a 21 volt 
step pulse into a 50 ohm load.  The pulse risetime is 75 ps.  Since the PPL step generator has a 
50 ohm output and the HIRA radiating elements have a paralleled impedance of 100 ohms, the 
step voltage seen at the input to the radiating elements is 28 volts (see (4-2)). 

A Tektronix 11801B Digital Sampling Oscilloscope records the ACD-9 response.  Step 
generator and oscilloscope are connected to the HIRA and sensor with 30 cm (12 in.) sections of 
semi-rigid coaxial cable fitted with SMA connectors. 

6.2 PREDICTED FIELD DATA 
We use the predicted field for a two-element IRA to derive an expression for the HIRA. 

A two-element IRA is shown schematically in Figure 6-2A.  The theoretical electric field 
generated by a two-element IRA driven by a step voltage, V, is given in [5] as: 
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where: 
E  = electric field, in V/m, 
D  = diameter of the reflector, in meters, 
V  = step voltage between the drive arms, 
fg  =  ratio of HIRA input impedance to free space (400/377), 
r  = distance from the HIRA, in meters, 
F  = focus of the parabolic reflector, in meters, 
c  = velocity of propagation, meter/second. 
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Figure 6-2:  Schematic formation of a HIRA from a two-element IRA 

Figure 6-2B shows the IRA with two additional arms.  Adding these two arms generates a 
rotated resultant field increased by the square root of two.  Rotating the entire IRA by 45 degrees 
results in Figure 6-2C.  Adding an infinite ground-plane through the horizontal symmetry plane 
and reducing the driving voltage by a factor of two results in Figure 6-2D.  Although the driving 
voltage is reduced, the electric field remains unchanged, due to the contribution from the 
reflection in the infinite ground plane.  Figure 6-2D is a good approximation of the physical 
HIRA, where the ground-plane appears essentially infinite. 

Doubling (6-1) and multiplying by the square root of two accommodates the changes 
from the two-armed IRA to the HIRA (i.e. accounts for the reduced drive voltage and the 
superposition of the fields from the two additional elements).  The result is: 
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where: 
 

V½ = step voltage on the drive arm with respect to the ground plane. 
 

Use of (6-2) with an analytic pulse having a 75 ps risetime and a 28 volt step, yields the 
theoretical electric field shown in Figure 6-3.  This is the field predicted for the scale-model 
HIRA at 1.52 m (5 ft) on the centerline. 
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Figure 6-3:  Theoretical electric field on the centerline at 152 cm from the scale-model HIRA. 
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6.3 COMPARISON THEORETICAL AND MEASURED ELECTRIC FIELDS 
Figure 6-4A shows a comparison of the theoretical electric field, as calculated from (6-2), 

with the measured electric fields.  Figure 6-4B shows the same data with an expanded time base.  
The measured fields for both the original HIRA, with no lens, and the new HIRA, with lens, are 
shown.  The measured data in this figure have been converted to units of volts/meter by 
integrating the measured sensor voltage and deconvolving the ACD-9 sensor response. 
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Figure 6-4:  Comparison of the measured and theoretical electric fields. 

Figure 6-4 shows that both HIRAs have similar responses.  The lensed HIRA shows a 
slightly larger response than original HIRA.  Both have peaks at approximately seventy percent 
of the theoretical peak value. 



 39

6.4 HIRA STEP RESPONSE AND IMPULSE RESPONSE 
Deconvolution of the input voltage step and cable response from the measured electric 

field and its derivative generates the HIRA step and impulse responses.  Figure 6-5A shows the 
impulse response for both the lensed and unlensed HIRAs.  Figure 6-5B shows the step 
responses for the HIRAs. 
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Figure 6-5:  HIRA impulse (A) and step (B) responses. 

6.5 CONCLUSIONS 
The lens has little effect on the radiated field.  Both HIRAs exhibit good agreement with the 

predicted electric field. 
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7 HIGH VOLTAGE TESTING 
To ensure that the lens material would capable of withstanding the expected electric field 

strength generated within the lens, we tested several disks of the material.  Figure 7-1 shows the 
test setup.  A disk is suspended between the two aluminum balls.  Then voltage is applied to the 
attached brass rods from two high-voltage, dc generators in series.  We tested six-centimeter-
diameter disks of various thickness.  Each disk was milled to a uniform thickness over the tested 
central portion. 

 
Figure 7-1:  High voltage test fixture. 

7.1 TESTING 
Each disk was held in place between the aluminum electrodes by pressure generated from 

the threaded brass rods.  During the first series of tests, without transformer oil in the tank, the 
high voltage tracked around the disk, rather than punching through.  The thinnest disk tested was 
1.37 mm thick.  Arcing around this disk occurred at about 32 kV.  After we added transformer 
oil to completely submerge this test disk, it withstood 70 kV without failing.  At 70 kV, corona 
formation and transformer oil rolling were sufficiently pronounced to terminate the experiment. 

Even with vacuum evacuation of the disks during curing, some voids form. We were 
unable to mill a full sized disk to a significantly smaller thickness, because of these voids, and 
because the thin disk was too fragile.  To circumvent this problem, we used a thicker disk and 
milled down only a small (approximately 2.5 mm diameter) center section.  This center section 
was 0.762 mm (30 mil) thick, with no visible voids. 
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When immersed in transformer oil, this disk failed at 50 kV, corresponding to 
65.6 MV/m (1.7 kV/mil).  The failure mode was a clearly visible hole punched through the 
milled-down section of the disk.   

7.2 WORST-CASE DC VOLTAGE REQUIREMENT 
Figure 7-2A shows a simplified drawing of the lens structure for the full-scale HIRA.  In 

this figure, the center conductor necks down to 0.81 cm at its narrowest point.  The following 
calculations assume a 1 MV pulse driving the HIRA. 
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Figure 7-2:  Simplified drawings of the lens structure for the full-scale HIRA. 

7.2.1 Lens Structure Considered as a Coaxial Transmission Line. 
The maximum electric field in a coaxial transmission line is generated at the center 

conductor as: 
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max ,     (7-1) 

where: 
Emax  =  maximum electric field within the coaxial structure, 
V  = voltage between the inner conductor and outer conductor, 
d  =  diameter of the inner conductor, 
D  =  diameter of the outer conductor. 
 
Within the oil-filled coaxial structure, the highest field will occur at the center conductor.  

In the oil, the diameter of the center conductor is 1.51 cm, and the diameter of the outer 
conductor is approximately 8 cm.  From (7-1), the maximum electric field will be 40 MV/m. 
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A reflection occurs where the center conductor attaches to the radiating elements, if the 
impedances do not match.  The impedance of the radiating elements is 100 ohms.  The 
impedance of a simple coaxial structure is given by: 
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
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r
coax ln60
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,     (7-2) 

where: 
Zcoax  =  impedance within the coaxial structure, 
εr  =  relative permittivity (dielectric constant = 2.2 for oil). 

For the HIRA coaxial section, (7-2) produces an impedance of 67 ohms.  Following the 
reasonably smooth transitional lens, the impedance of the 100 ohm radiating elements appears at 
the attachment point.  A 67 ohm to 100 ohm impedance jump has a reflection coefficient of 
about 0.20; so the maximum electric field generated is twenty percent higher than the 40 MV/m 
predicted by (7-1).  The simple coaxial model thus predicts a maximum field of about 48 MV/m. 

7.2.2 Lens Structure Considered as a Biconic TransmissionLine. 

Figure 7-2B shows the HIRA lens area modeled as a biconic transmission line.  From [6], 
the impedance and electric field for a biconic transmission line are given as (7-3) and (7-4), 
respectively: 
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where: 
K  =  biconic impedance, 
η   =  intrinsic impedance of the dielectric material , 
θ1  =  half-angle of center conductor cone (5.8 degrees in Figure 7-2B),  
θ2  =  half-angle of the outer conductor cone (55.5 degrees in Figure 7-2B).  

and 

( )1sin2 θπ
η

θ rK
VE = ,     (7-4) 

where: 
r  =  radial distance along the centerline from the apex. 
 

Combining (7-3) and (7-4) generates (7-5) for the electric field in terms of the voltage, conic 
half-angles, and distance from the conic apex: 
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With r = 7.354, and the simplifying assumption of a homogenous dielectric, the half-

angles given in Figure 7-2B produce an approximate electric field at the oil-lens-material 
interface of 58 MV/m. 
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At the interface, the dielectric constant changes from 2.2 for the oil to 7.0 for the lens 
material.  Since the dielectric constant for the lens material is greater than that of the oil, the 
intrinsic impedance of the lens material is less than that of the oil.  The lower impedance results 
in a negative reflection coefficient determined as: 

21

21
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εε
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−
= ,     (7-6) 

where: 
ρ  =  reflection coefficient of the boundary between the oil and lens material, 
ε1  =  dielectric constant of the oil (2.2), 
ε2  =  dielectric constant of the lens material. 

 
Near the coaxial section, the lens structure approximates a bicone in oil.  From (7-3), the 

impedance of the oil-filled bicone is 95 ohms.  Near the radiating elements, the lens structure 
appears as a bicone filled with lens material.  The impedance of this structure is 53 ohms.  These 
values agree, qualitatively, with the impedance calculations and measurements of Section 5.  
Upon entering the lens domain, but while still within the oil, the structural impedance rises above 
67 ohms.  In the section consisting only of lens material, the impedance falls below 67 ohms. 

Eventually the pulse encounters the 100 ohm impedance of the radiating elements.  As a 
worst case, assuming the lens to have a negligible effect due to the short transit time, the electric 
field will be increased by the reflection caused by the transition from the 67 ohm coaxial region 
to the 100 ohm radiating-element region, as in Section 7.2.1.  For the 58 MV/m field calculated 
from the biconic electric field, the rise from 67 ohms to 100 ohms will increase the field strength 
to 70 MV/m. 

7.3 CONCLUSIONS 
The measured threshold breakdown field strength for the lens material is 65 MV/m for dc 

conditions.  The coaxial and biconic models predict electric fields in the lens structure of 
48 MV/m and 70 MV/m, respectively.  However, these fields exist only at the peak of very short-
duration voltage pulses.  The measured breakdown strength is for dc fields, and cannot be 
directly related to very short-pulse breakdown.  One would expect a good dielectric to withstand 
pulsed voltages at least an order of magnitude higher than for dc voltage.  Since the predicted 
pulsed field magnitudes are on the same order as the measured dc breakdown threshold, there is 
an adequate safety margin. 
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