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Abstract 
 

A critical component of a high-voltage Half Impulse Radiating Antenna (HIRA) is the feed point 
lens, which is used to match an electrically large coaxial waveguide to the feed arms of the 
HIRA. The coaxial input interface is a prolate spheroidal (ellipse of revolution) surface; the 
output interface is a quartic surface. We derive equations for the design of this lens, subject to 
impedance matching constraints. We also derive a figure-of-merit for the lens design based on an 
aperture integral of the electric field. We provide solutions for two configurations based on these 
derivations. The most important result of these analyses is that the optimum design is an oil-lens-
air configuration with a lens relative dielectric constant of 7.0. 
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I. Introduction 

In [1] we developed design equations for the feed point lens used to match an electrically 
large coaxial waveguide to the feed arms of a high-voltage Half Impulse Radiating Antenna 
(HIRA). This lens, built from a single homogeneous dielectric material, converts a plane wave in 
the coaxial waveguide to a spherical wave launched onto the conical feed arms of the antenna. 
Although one would normally want to split the center conductor of the coaxial waveguide into 
two feed arms, we can only solve the problem semi-analytically for a rotationally symmetric 
geometry. For this reason, we assumed a single conical feed and an F/D ratio of 0.25, in order to 
maintain rotational symmetry. The solution to this case provides a good approximation to the 
less tractable three-dimensional problem. 

Sketches of two possible lens designs, originally presented in [1], are shown in Figure I–
1. We refer to the first design, which includes an oil cap, as an oil-lens-oil design. The second 
design, with no oil cap, simply has air or SF6 at its output. This is an oil-lens-air design. The 
lens converts a plane wave in a coaxial geometry to a spherical wave in a conical geometry. The 
focus of the spherical wave is on the ground plane, at the center of the coaxial feed, and at the 
focus of a parabolic reflector. 

In [1] we provided design equations that included both oil-lens-oil and oil-lens-air 
configurations. Examples based on those equations assumed input coaxial waveguide dimensions 
determined by high-voltage breakdown considerations. The impedance in oil was about 67 Ω, 
equivalent to 100 Ω in air. The matching lens output impedance was not enforced, and flare 
angle of the center conductor was unspecified. There remained three independent design 
parameters: (1) the dielectric constant of the lens, (2) the flare angle of the outer coaxial 
conductor in the transition to the output ground plane, and (3) the size of the hole in the output 
ground plane—the thickness of the lens scales with the size of this hole. 

In this paper we extend the derivation of the lens equations presented in [1] to include 
enforcement of an output impedance matched to the input. This leads to a relationship between 
the first two design parameters cited above and to specification of the center conductor flare 
angle where it transitions to the conical output feed—both center and outer conductor shapes are 
determined. No new constraints are introduced concerning the size of the hole in the ground 
plane. The relationship between lens dielectric constant and outer conductor flare angle 
supplants the minimum flare angle introduced in [1] as arbiter of the minimum dielectric 
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constant required for a viable lens design. We also provide here for design optimization based on 
maximizing the aperture integral of the electric field for the fast impulse. This leads to a choice 
of lens dielectric constant and corresponding outer conductor flare angle. We begin with 
incorporation of the output impedance condition into the lens design equations. 

     
 

 
Figure I–1. An oil-lens-oil design (top), and an oil-lens-air design (bottom). 
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II. Imposition of the Output Impedance Condition 

In the material that follows, we conform closely with the notation of [1]. We derive 
below a general expression for 2 1/ , and we use that expression along with previously derived 
results to incorporate a constraint in the lens design based on matching the output impedance of 
the lens to the impedance of the coaxial input waveguide. In following this material, it may be 
helpful to refer to the following figure, which amplifies the content of [1, Figure 3.1]. 

In [1], we presented an equation for 2 1/ , based on the quartic equation for the lens-air 
interface, which involves the angle, θ1, through which the extreme ray is bent by the ellipsoidal 
lens surface, and ε r2, the ratio of the dielectric constant of the lens to the dielectric constant of 
the output medium—note that in [1], θ1 was called ∆θ1. A general expression for 2 1/ , valid 
for any ray initially traveling parallel to the axis of the coaxial input line can also be derived 
from the quartic equation ([1, (3.3)], reproduced below). That expression involves the angles 
through which such a ray is bent by both ellipsoidal and quartic lens surfaces. It also provides a 
means to relate the output impedance to other lens design parameters. 
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Figure II–1. Lens Design Parameters 
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We begin our derivation with [1, (3.3)], the quartic equation 

 ε r z z2 1
2

1 2
2

2
2 2− + + − +F

H
I
K = − + +Ψ Ψb g  (2.1) 

First, we divide through by Ψ  to obtain 

 ε r
z z

2
1 1 2

2

2
2

2

21 1− + +
− +F

H
GG

I
K
JJ = − + +

Ψ Ψ Ψ Ψ

b g
 (2.2) 

We next remove the explicit z,Ψa f  dependence by introducing two angles, θ  and ϑ . The former, 
θ , is the angle by which a ray traveling axially in the coax region is bent as it passes through the 
ellipsoidal surface of the lens. It is a generalization of the angle, ∆θ1, used in [1] and herein 
referred to simply as θ1. The angle, ϑ , is the total bend angle experienced by the same ray after 
it has emerged from the quartic surface of the lens, which bends it by ϑ θ− . This ray, during its 
traverse of the lens at angle, θ , appears to originate at the left focus of the ellipsoid; upon 
emergence from the quartic, it appears to have originated at the coordinate system origin. From 
the geometry, we know that 

 cot cotθ ϑ=
+ −

=
z z1 2

Ψ Ψ
  and   (2.3) 

We use these to eliminate the explicit z dependence from the quartic, obtaining 

 ε θ ϑr2
1 2 2 21 1− + +F

H
I
K = − + +

Ψ Ψ
cot cot  (2.4) 

Next, the θ  and ϑ  equations (2.3) can be solved simultaneously to obtain Ψ  as a function of θ  
and ϑ : 

 Ψ =
− +

−
1 2

cot cotϑ θ
 (2.5) 

We now use this result to eliminate the remaining explicit Ψ  dependence from the quartic. After 
making this substitution and using the trigonometric identity, csc cot2 21θ θ= + , we obtain: 

 
ε

ϑ θ ε θ ϑ θ ϑr
r

2

2 1
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2 1

2 11 1−
− + =

−
− +

/
cot cot csc

/
/

cot cot csca f a f  (2.6) 
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Since we have neither solved a quadratic nor introduced new quadratic terms in reaching this 
point, we choose the signs on the cosecant terms to match their sources in the original quartic. 
Now, we multiply through by 1 2 1− /  and solve the resulting linear expression for the ratio 

2 1/ , finally obtaining 

 2

1

2

2
=

− + − +
− + − +
csc cot cot csc
csc cot cot csc

ϑ ε ϑ θ θ
ϑ ϑ θ ε θ

r

r

a f
 (2.7) 

The general expression for 2 1/  obtained above can be used to relate the lens design 
parameters to the desired output impedance of the lens. The output impedance can be related to 
the angles ϑ  and θ  for the paraxial ray (Ψ Ψ= 0 in the coaxial region) and for the extreme ray 
(Ψ Ψ= 1), respectively. The paraxial ray is bent through an angle of θ θ= 0 at the first interface 
and emerges from the second interface at an angle of ϑ ϑ= 0  with respect to the axis. The 
extreme ray is bent through an angle of θ θ= 1 at the first interface and emerges from the second 
interface at an angle of ϑ π= / 2, parallel to the ground plane at z = 0. The output impedance is 
that of a monocone, with cone angle ϑ 0 , over a ground plane. We need to solve for the lens 
parameters consistent with these constraints for the desired impedance of Zcoax

air . This impedance 
is determined by the output cone angle, ϑ 0 . Thus, we solve the following impedance expression 
for the cone angle 

 Z Z
Z

coax
air

3 3
0 0

2 2
ε

π
ϑ

= = F
H

I
Kln cot  (2.8) 

where Z0, is the impedance of free space, 376 727. Ω . 

This result can now be used with the general expression for 2 1/ , evaluated at θ θ= 0 
and ϑ ϑ= 0 , to obtain an expression in which the unknowns are 2 1/  and θ0  

 2

1

0 2 0 0 0

0 0 0 2 0
=

− + − +

− + − +

csc cot cot csc
csc cot cot csc

ϑ ε ϑ θ θ
ϑ ϑ θ ε θ

r

r

b g
 (2.9) 

Although we could use [1, (3.3)] to provide an equation relating θ1 and 2 1/ , we can obtain an 
equivalent relationship by evaluating (2.7) at θ θ= 1 and ϑ π= / 2 

 2

1

2 1 1

1 2 1

1
1

=
− + − +

− − +
ε θ θ

θ ε θ
r

r

cot csc
cot csc
b g  (2.10) 
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By equating these two expressions for 2 1/ , we can eliminate 2 1/ , leaving a single equation 
for the two unknown angles, θ θ0 1 and . An independent equation relating θ θ0 1 and  can be 
obtained by considering the impedance condition in the coaxial transmission line and a 
generalization of [1, (3.8)]. That generalization is 

 a r

r
rΨ

=
−

+
ε

ε
θ ε θ1

1
11

cot cscc h (2.11) 

where a  is the semi-major axis of the ellipsoidal lens surface, ε r1 is the ratio of the dielectric 
constant of the lens to the dielectric constant of the input medium (oil), and θ  is the bend angle 
of a ray traveling parallel to the z-axis, which strikes the ellipsoidal lens surface at the radial 
coordinate, Ψ . Equation 3.8 of [1] is simply this expression evaluated at (θ1 1,Ψ ). Now, we also 
evaluate a / Ψ  for the paraxial ray at (θ0 0,Ψ ), and form the ratio, a a/ / / /Ψ Ψ Ψ Ψ0 1 1 0b g b g = , to 
obtain another equation relating θ θ0 1 and  

 
Ψ
Ψ

1

0

0 1 0

1 1 1

2 21 0=
− +
− +

= =
cot csc
cot csc

/θ ε θ
θ ε θ

π ε πr

r

f Z Ze eg coax
air

 (2.12) 

where we have also incorporated the coaxial line impedance result of [1, (5.3)]. Since the 
ratio,Ψ Ψ1 0/ , is just a constant determined by the input impedance, we now have sufficient 
information to solve for θ0 , θ1, and 2 1/ . 

Summarizing, the equations to be solved for θ θ0 1and  are 

 
− + − +

− + − +
=

− + − +
− − +

csc cot cot csc
csc cot cot csc

cot csc
cot csc

ϑ ε ϑ θ θ
ϑ ϑ θ ε θ

ε θ θ
θ ε θ

0 2 0 0 0

0 0 0 2 0

2 1 1

1 2 1

1
1

r

r

r

r

b g b g
 (2.13) 

derived by equating the 2 1/  expressions for paraxial and extreme rays, ((2.9), and (2.10)), and 

 
− +
− +

=
cot csc
cot csc

/θ ε θ
θ ε θ

π0 1 0

1 1 1

2 0r

r

Z Ze coax
air

 (2.14) 
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where 
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 (2.15) 

For an assumed value of the lens dielectric constant, ε2, equations(2.13) and (2.14) can 
be solved numerically for θ θ0 1 and . In order to reduce the numerical solution process to a 
search for just one angle, θ1, rather than both simultaneously, we eliminate θ0  between these 
equations. To do so, we first make use of the substitutions 

 cot cscθ θ= = +x x   and  1 2  (2.16) 

These transform (2.12) and (2.13) into 

 

− + − + +FH IK
− + − + +

=
− + − + +FH IK
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=
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x x
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x x

x x
and Κ

 (2.17) 

where ΚZ Z= exp 200 0πb g . Next we solve the second of this pair of equations for x0  and select 
the positive root, since a negative θ0  is non-physical. The root is 
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H
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We use this result to eliminate x0  from the first equation of the (2.17) pair. The resulting 
expression can be solved numerically for x1 by Newton's method. Then, x0  can be obtained from 
(2.18); and θ θ0 1 and  can be recovered as arccot x0 and arccot x1, respectively. 

The angles θ θ0 1 and  are 
determined by the choice of ε2 
and by the input (coaxial 
transmission line) impedance and 
output (cone over ground plane) 
impedance. The bend angle for 
the extreme ray, θ1, is now a 
function of ε2, as determined by 
the impedance constraints. This 
function is restricted to those 
values of θ1 which lie between 
the maxima and minima given by 
[1, (4.2) and (4.6)]. From the 
accompanying graphs of these 
functions, we see that the 
minimum bend angle proves 
irrelevant. Whereas [1, (4.6)] 
assumed 2 1 0/ → , here, this 
ratio is determined by the 
impedance constraint. The 
maximum bend angle, in 
combination with the impedance 
constraint determines the 
minimum allowable ε2. 

At this point, the lens design is complete, save specification of the radius of the lens 
output, Ψ2 . The parameters of the ellipsoidal surface, a, b, and d, are obtained from (2.11) and 
from [1, (3.2)]. The ratio 2 1/  is obtained from (2.7). The ratio, Ψ2 1/ , is calculated by 
inversion of [1, (3.11)] as 

 Ψ2 1
2 1

1

1/ /
cot

=
−

θ
 (2.19) 
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Figure II–2. Constraints on θ1 and ε 2  for oil-lens-oil 

(top) and oil-lens-air (bottom) designs. Oil is 
assumed to have a dielectric constant of 2.2. 
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A minimum for Ψ2  is calculated from [1, (3.16)]. Selection of a suitable value, based on that 
constraint, completes the lens design specification for the assumed ε2. 

III. Lens Figure-of-Merit 

An appropriate measure of performance of the lens is the aperture integral of the electric 
field for the fast impulse. A meaningful figure-of-merit for lens design must relate this aperture 
integral to the transmission coefficient for rays transmitted by the lens. Since the lens is 
symmetric about the z-axis, the transmission coefficient must possess the same rotational 
symmetry. Thus, all rays originating on a shell of constant radius, Ψ, in the coaxial waveguide 
feed will penetrate the lens and ultimately emerge in air with the same total transmission 
coefficient, Tt(Ψ), the product of the Fresnel transmission coefficients for the ellipsoidal and 
quartic lens interfaces and for the spherical output (to air) interface, if applicable (see Figure I–
1). 

In Appendix A, we present a derivation which reduces the figure-of-merit calculation to 
evaluation of a single line integral of the transmission coefficient T(u) along the y-axis in the 
aperture plane. There we use conformal mapping to show that the aperture plane integration can 
be replaced by integration over the radial coordinate, Ψ, in the coaxial input line. With minor 
changes in notation, the resulting figure-of-merit expression is 

 η
ε

= =
+z

h

h
T

da oil

a oil
opt

oil

t,

,
( )

( )
( / )

2
1

1
4

1
20

1Ψ Ψ

Ψ Ψ
Ψ

Ψ

Ψ
 (3.1) 

where ha oil,  is the aperture integral of the electric field in the presence of transmission losses 

and ha oil
opt
,

( )  is the optimal aperture integral, both normalized to the power in the oil-filled coax, as 

described in the appendix; ε oil  is the relative dielectric constant of oil. The figure-of-merit is a 

dimensionless quantity, expected to vary between zero and one. Lens design optimization 
consists of choosing parameters that maximize this figure-of-merit. 

Given the lens properties and geometry, it is a straightforward process to calculate the 
required transmission coefficients from the Fresnel equations. The Fresnel transmission 
coefficients in terms of ray incidence angles at each lens interface can be converted to 
expressions dependent on Ψ in the coaxial line by application of Snell’s law of refraction and by 
using the normal derivatives at the lens surfaces. This permits the above equation to be evaluated 



 11

numerically to obtain the figure-of-merit for any choice of ε 2 . We now describe this approach to 
obtaining Tt(Ψ). 

For E-plane incidence (electric field parallel to the plane of incidence), the Fresnel 
transmission coefficient at each interface is [2, p. 191] 

 T i
i t i

i i t i t i

( )
cos( )

cos( ) ( ) sin ( )
α

ε ε α

α ε ε ε ε α
=

+ −

2

1 2
 (3.2) 

where α i  is the angle of incidence, ε i is the dielectric constant in the medium of incidence, and 
ε t  is the dielectric constant in the medium of transmission. At the ellipsoidal lens interface, ε i is 
ε1 and ε t  is ε 2 . At the quartic interface, ε i is ε 2  and ε t  is ε 3. Since the output interface is 
assumed to be spherical and concentric with the wavefront, all rays are incident normally there; 
and the interface transmission coefficient reduces to 

 To
t i

=
+

2
1 ε ε

 (3.3) 

Here, ε εt air=  is always 1.0; and ε i is ε oil  for an oil-lens-oil design and ε air  for an oil-lens-air 
design. Thus, To oil lens oil, .− − = 1195—the output transition is from oil to air—and 
To oil lens air, .− − = 1 0—there is no output transition. The total transmission coefficient for a ray is 
just the product of the transmission coefficients at each of these interfaces. 

Since the field in the coaxial input line is a plane wave, the rays there are traveling 
parallel to the z-axis; so the angle of incidence of each ray on the ellipsoidal lens surface is the 
same as the angle, α e n, , formed between the axis and the normal to the ellipse at that point, 
ze e,Ψb g. If such a ray is transmitted by the ellipsoidal surface, forming an angle, θ , with the z-

axis, it will be incident upon the quartic surface at an angle, α θ αq i q n, ,= − , where α q n,  is the 
angle of the normal to the quartic surface at the point of incidence, zq q,Ψd i. Now, the angle of 
the normal to a curve at some point is just the angle whose cotangent is the negative of the slope 
at that point. Thus, the angles of incidence at ellipsoidal and quartic surfaces are given by 

 

α α ∂
∂

α θ α ∂
∂

e i e n
e

q i q n
e

e q

z

z
z

, ,

, ,

arccot

arccot arccot

= = −
F
HG

I
KJ

= − =
− − +F

HG
I
KJ − −

F
HG

I
KJ

Ψ

Ψ
Ψ1 2b g  (3.4) 
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where the tangents to the ellipse and quartic are 

 

∂
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z
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+

F

H

GGGGGG

I

K

JJJJJJ
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2
1 2

1 2

1 2
2 2

2 2 2

1

1

and

 (3.5) 

by differentiation of the ellipsoidal and quartic expressions, respectively. The incidence angle for 
a ray that strikes the ellipsoidal surface at ze e,Ψb g can be calculated directly from the equation 
for the ellipse (solved for ze  in terms of Ψe) and its derivative (above), given an assumed value 
for Ψe. Calculation of the incidence angle at the quartic is more involved. First, we solve for the 
intersection of the ray with the quartic by numerically solving the quartic equation, (2.1), and the 
ray equation, Ψ = − − +z 1 2b gc h cotθ , simultaneously to obtain zq q,Ψd i. The above 
derivative of the quartic can then be evaluated and the incidence angle calculated. The 
transmission coefficients for the two interfaces can then be used along with the spherical output 
interface transmission coefficient, To  (see (3.3)), to obtain the total transmission coefficient for 
the ray. Τo numerically evaluate the integral in the figure-of-merit expression, (3.1), this process 
is repeated for values of Ψ  from Ψ0 to Ψ1. 

The figure-of-merit was calculated for a range of lens dielectric constants for oil-lens-oil 
and oil-lens-air designs consistent with the impedance constraints presented earlier. These data 
are presented in Figure III–1. All calculations assumed a coaxial input waveguide outer radius of 
8.5 cm. Since both input and output impedances were matched at 100 Ω (in air), the center 
coaxial conductor radius was 1.6 cm (see (2.12)); and the output conductor cone angle was 21.37 
degrees (see (2.15)). We observe that for both types of lens design, the figure-of-merit is a 
monotonically decreasing function of the lens dielectric constant. Thus, the optimum design in 
each case results from selection of the lowest possible dielectric constant, consistent with the 
constraints previously developed. We conclude that for the oil-lens-oil case, the dielectric 
constant must be greater than about 9.6, while for the oil-lens-air case, it must be greater than 
about 6.9. Since a lower dielectric constant is easier to achieve and will produce smaller 
reflection losses, an oil-lens-air design with a lens dielectric constant of about 7.0 is the 
optimum choice. 
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IV. Optimized Lens Designs 

For both oil-lens-oil and oil-lens-air designs, we chose an output impedance of 100 Ω 
and an outer coaxial waveguide radius of 8.5 cm. As a result, the inner coaxial conductor radius 
was 1.6 cm and the flare angle of that conductor outside of the lens was 21.37 degrees. Based on 
the figure-of-merit calculations, we chose a lens dielectric constant of 10 for the oil-lens-oil 
design and 7 for the oil-lens-air design. Note that neither the impedance constraints nor the 
figure-of-merit calculations lead to specification of the lens output radius, Ψ2. This remains a 
free parameter, subject only to the minimum introduced in [1, (3.16)], which ensures that the two 
lens interfaces do not intersect on axis. We used the minimum for both designs. The following 
table lists the parameters for both oil-lens-oil and oil-lens-air optimal lens designs. Dimensions 
and positions are in centimeters; angles are in degrees. The figures which follow the table 
(Figure IV–1 and Figure V–2) show half cross-sectional views of the two designs, including the 
paths for representative rays (equipotential lines) traced through the structures. The calculated 
figure-of-merit for the oil-lens-oil design is 0.981; for the oil-lens-air design, it is 0.991. 
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Figure III–1. Figure-of-merit for oil-lens-oil and oil-lens-air designs 

and an impedance of 100 Ω in air (67 Ω in oil). The 
dielectric constant of oil is assumed to be 2.2. 
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Lens Design Parameter Symbol Oil-Lens-Oil Oil-Lens-Air 
Input Values 

Coax dielectric constant ε1 2.2 2.2 
Lens dielectric constant ε2 10.0 7.0 
Output dielectric constant ε 3 2.2 1.0 
Output cone angle ϑ 0  21.37 21.37 
Coax outer radius Ψ1 8.50 8.50 
Coax inner radius Ψ0  1.60 1.60 
Outer radius Ψ2  18.12 17.30 

Lens Ellipsoidal Interface 
Ellipsoid semi-major axis a  9.63 10.27 
Ellipsoid semi-minor axis b  8.50 8.50 
Ellipsoid focal distance d  4.52 5.75 

Lens Transition Region 
Extreme ray maximum bend 
angle 

θ1,max 62.03 55.90 

Extreme ray minimum bend 
angle 

θ1,min  50.26 41.41 

Outer conductor flare angle θ1 60.96 55.45 
Center conductor flare angle θ0  6.55 5.78 
Center conductor radius at lens 
output 

Ψ3 1.63 1.63 

Lens Size and Proportions 
Minimum outer radius Ψ2,min  18.12 17.30 
Outer radius (input) Ψ2  18.12 17.30 
Quartic surface to ellipsoid 
focal point distance 

1 14.14 16.02 

 2 1/  0.289 0.256 
 Ψ2 1/  1.28 1.08 
 Ψ Ψ2 1/  2.13 2.04 

Lens On-axis Coordinates 
Ellipsoid focal point location − +1 2 -10.06 -11.91 
Ellipsoid center − + +1 2 d  -5.54 -6.16 
Ellipsoid forward extent − + + +1 2 d a  4.08 4.11 
Quartic surface location 2 4.08 4.11 

Some Intersections 
Ellipsoid—center conductor z0 0,Ψb g (3.91, 1.60) (3.92, 1.60) 
Coax outer conductor—lens z1 1,Ψb g (-5.34, 8.50) (-6.06, 8.50) 
Lens—quartic—ground plane z2 2,Ψb g (0.00, 18.12) (0.00, 17.30) 
Quartic—center conductor z3 3,Ψb g (4.18, 1.63) (4.16, 1.63) 

Lens Performance 
Figure-of-Merit η 0.981 0.991 
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V. Concluding Remarks 

We have provided design equations and optimized designs for the feed-point lens needed 
to build a high-voltage half IRA. Since for both oil-lens-oil and oil-lens-air designs, the figure-
of-merit decreases monotonically with increasing lens dielectric constant, the optimum choice of 
lens dielectric constant in an impedance matched system is one slightly larger than the minimum 
consistent with the condition that the required bend angle for the extreme ray at the first lens 
interface not exceed the maximum possible. The thickness of the lens in the axial direction scales 
with its output radius, which remains a free design parameter. 

Since the figure-of-merit is a weak function of the dielectric constant of the lens, we are 
free to choose this parameter with minimal concern for its impact on lens performance. Since a 
lower dielectric constant is easier to achieve, and larger reflection losses accompany higher 
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Figure IV–1. Optimized 100Ω oil-lens-oil design. The lens dielectric 
constant is 10. The figure-of-merit is 0.981. 
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dielectric constants, the optimal design is the oil-lens-air design with a lens relative dielectric 
constant of about 7.0. 
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Figure V–2. Optimized 100Ω oil-lens-air design. The lens dielectric constant 
is 7. The figure-of-merit is 0.991. 
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Appendix A 

A-I. Derivation of the Figure-of-Merit for the Half IRA Lens 

We consider here a procedure for choosing the optimal design of the lens, from the 
family of solutions that were provided in [1]. Since the lens is symmetric about the z-axis, the 
transmission coefficient must also have the same property. Thus, all rays originating on a line of 
constant radius Ψ in the feed coax will penetrate the lens with the same transmission coefficient, 
Tt(Ψ), where Tt(Ψ)is the total transmission coefficient through the interfaces of the lens and 
through the final output interface to air, if any. It is straightforward to calculate this transmission 
coefficient for a given lens design from the Fresnel equations. 

One can now imagine an optimization procedure in which one postulates a lens 
configuration, calculates a figure-of-merit based on Tt(Ψ), and makes adjustments to the lens to 
improve the figure-of-merit. We know that ideally we want Tt to be as large as possible for all Ψ, 
but it is unclear in what sense. 

In fact, we must optimize the lens in the sense that the aperture integral of the electric 
field for the fast impulse is maximized. Recall that the early-time expressions for the radiated 
field in transmit mode and the received voltage in receive mode are 

 
E t

h
r c f

dV t
dt

V t h E t

rad
a

g

rec a inc

( ) ( )

( ) ( )

= −

= −

2π  (A.1.1) 

where fg is the feed impedance (typically 100 Ω) divided by 377 Ω, and ha is defined by  

 h
f
V

E x y dx dya
g

o
ySa

= − ′ ′ ′ ′zz ,b g  (A.1.2) 

To optimize the radiated field and received voltage, one must maximize ha. (One might also like 
a small fg, but that is already fixed at 100 Ω/ 377Ω.)  

We now have to express how ha varies with Tt(Ψ). To do so, we note that lines of 
constant Ψ in the feed coax must end up as lines of constant u in the aperture plane (Figure A:A-
I–1). This must be true because in both cases we have a solution to the static Laplace’s equation. 
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A proof that the aperture field, when there is no reflection loss, is a solution to the static 
Laplace’s equation is in [3, Appendix A]. This solution is just the solution to the problem of a 
wire above a ground plane. 

We therefore infer that if the fields vary with Ψ in the input coax, they must vary locally 
with u at the output. Thus, Tt(Ψ) = Tt(u), where the relationship between Ψ and u must be 
determined by conformal mapping. In the section that follows, we find a conformal mapping 
from the coax to the aperture plane. Once that is established, we then show how to use this 
information to modify ha and to derive from it a suitable figure-of-merit. 

A-II. Conformal Transformation of a Half Coax to a Wire over Ground Plane 

Since the conformal transformations for a coaxial cable and for a wire above a ground 
plane are well understood, it is straightforward to link the two. The steps of the transformation 
are shown below in Figure A:A-II–1. 

 
Figure A:A-I–1. The coaxial feed (left) is transformed into a geometry 

described by a wire above a ground plane in the aperture plane 
(right). Lines of constant radius in the feed coax become lines of 
constant u in the aperture plane. 
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We must be able to describe four coordinate systems. In the order they are used, we have  

 

′ = ′ + ′
′ = ′ + ′

= +
= +

ζ

ζ

x j y
w u j v
w u j v

x j y

 (A.2.1) 

where x, x’, y, y’, u, u’, v and v’ are all real. Note that x, y, ζ and x’ y’ and ζ’ all have the units of 
meters. Furthermore, u, v, w, u’, v’ and w’ are all dimensionless. 

To find the relationship between the first and second coordinate systems, we refer to 
[4, p. 61], obtaining 

 
Figure A:A-II–1. The coordinate transformations required to transform 

a half coax to a wire above a ground plane. 
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The relationship between the second and third coordinate system is just an inversion and 
translation. Note that the size and shape of the rectangles in the second and third coordinate 
systems are the same. Thus, we have  

 w w u= − ′ + ′2  (A.2.3) 

Finally, the relationship between the third and fourth coordinate system can be expressed in 
various ways as [5] 
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where we have shifted w by jπ/2, in comparison to the usage of [5]. We have shifted w in this 
way in order to have v = 0, instead of v = π/2, on the unit circle in the aperture plane. After 
combining all of the above transformations, and using the relationship that eu ′ =2 1, we find a 
relationship between the first and last coordinate systems, i.e.,  

 
ζ ζ

ζd
j j b

j b
=

− ′
+ ′

1
1

/
/

 (A.2.5) 

This is the relationship we have sought.  

Looking ahead, we know we will have to carry out a line integral along the line from P6 
to P3. In the coax, this line can be expressed as  

 ′ = = −−ζ πΨ Ψe jj / 2  (A.2.6) 

where Ψ is the radial coordinate that varies between a and b. Substituting this into (A.2.5), we 
find the relationship between y in the aperture plane and Ψ in the coax along the line P6P3 as 
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which is valid along the line P6P3. The reason why we require this relationship will become 
apparent in the next section.  

A-III. Adjustment of ha to include Transmission Coefficient 

To calculate the radiated field, we first consider the case in which the field is not 
perturbed by the transmission coefficient. Later, we perturb the solution by the transmission 
coefficient.  

In the case where there is no transmission coefficient to consider, the radiated field is 
described by (A.1.1), with ha calculated as in (A.1.2). It is simplest to calculate over one-half of 
the actual aperture, so we have  

 h
f

V
E x y dx dy

v
v dya

g

o
yS Ca a

= − ′ ′ ′ ′ = −zz z2 2, ( )
' '
a f

∆
ζ  (A.3.1) 

where Sa’ is as shown in Figure A:A-III–1. Here, fg is the input impedance for a wire above the 
ground plane, which is normally 100 Ω�/�377 Ω, and Vo is the voltage from the feed arm to the 
ground plane. The last step follows from [5 and 6]. 

In the absence of a perturbation due to the transmission coefficient, the contour integral is 
straightforward to calculate. The integral from P3 to P2 is zero because there is no change in y. 

 
Figure A:A-III–1. The contour integral over half the aperture, Ca' . 
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The integral from P2 to P1 is zero because v is zero. Finally, the integral from P1 to P6 is 
vanishingly small for thin wires. This leaves just the integral from P6 to P3 , which is just 
−π d / 2 . Since ∆v = 2π, we have for the unperturbed case 

 h d
a =

2
 (A.3.2) 

This can now be used in the antenna equations, (A.1.1), to calculate the radiated field and 
received voltage. 

Next, we consider the more interesting case of what happens when there is a perturbation 
in the field due to a transmission coefficient that varies as a function of position in the aperture 
plane. Recall that we have shown that the field in the aperture plane varies as a function of u, 
where lines of constant u are equipotential lines. Thus, the contour integral is modified to read 

 h
v

T y v y dya tC
=

− z2
63∆

( ) ( )  (A.3.3) 

where C63 is the straight-line contour from P6 to P3. This expression assumes that the field is 
affected only locally by the transmission coefficient, an assumption which is valid at high 
frequencies. As before, v(y) = π/2 on the contour, and ∆v = 2π; so we have the simplified result 

 h T y dya tC
= − z1

2 63
( )  (A.3.4) 

Note that Tt(y) includes transmission coefficients for all interfaces, including the final oil-air 
interface implied by an oil-lens-oil design. That final interface introduces no additional y-
dependence, however, as we assume it is spherical and concentric with the emerging wavefront. 
To simplify the above expression even further, we note that we can express Tt(y) in terms of Ψ in 
the coax feed. Thus, we have 
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where we have used (A.2.7) to relate y to Ψ. Note that C63 is now the contour in the coax from 
P6 to P3, as shown in the first sketch of Figure A:A-II–1. This is simplified to  

 h d
b

T
b

da
t

a
b

=
+z

( )
( / )

Ψ

Ψ
Ψ

1 2  (A.3.6) 

This is the final result we have sought. Note in this expression that ha = ha,oil is normalized to a 
plane of reference in oil. If we used a plane of reference in air, we would recover the unperturbed 
result of (A.3.2), h da air, /= 2 . 

A suitable figure-of-merit for our candidate lens configurations may now be defined as 

 η =
h

h
a oil

a oil
opt
,

,
( )  (A.3.7) 

where ha oil
opt
,

( )  is the value of the aperture integral, normalized to a plane of reference in oil, that 

would be observed if there were no power losses in the transition from oil in the coax to air. We 
derive below this optimal aperture integral. 

Recall from (A.3.1) that ha  is inversely proportional to the voltage. If we assume that the 
an optimal transition between oil and air would be a smooth transition region with no power loss, 
then the power in oil and in air would be the same and we could write 
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V
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Z

a oil
opt

a air

air
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c air

c oil

,
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,
( )

,

,
= =  (A.3.8) 

since the voltage is proportional to the square root of the power–impedance product. Now, since 
the impedance is proportional to the square root of the dielectric constant, and the relative 
dielectric constant of air is 1.0, we have 

 h da oil
opt

oil,
( ) = 2 4a f ε  (A.3.9) 

where we have used h da air, /= 2 , and ε oil  is the relative dielectric constant of oil. 

Combining the expressions obtained above, we finally obtain as our lens figure-of-merit 
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Ψ
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Recall that for each candidate lens configuration we can calculate a total transmission 
coefficient as a function of Ψ in the oil-filled feed coax. It has until now been unclear how to 
weigh the contributions of each ray to the overall radiated field. The above expression tells us 
how to weigh that contribution. It is therefore the figure-of-merit for the candidate lens 
configuration. 
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