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Abstract 

 

An important component of a high-voltage half reflector impulse radiating antenna (HIRA) is the 
feed-point lens. Designs are available to feed reflectors which have focal length to diameter 
ratios (F/D) equal to 0.25, but the theory for higher F/D ratios has not been available. We 
develop here the theory for F/D ratios larger than 0.25. We retain a rotationally symmetric lens; 
but the lens is now penetrated by an off-axis inner conductor. This conductor is offset such that 
the charge center follows a ray path, from the input feed, through the lens, which emerges at the 
specific angle required to obtain the target F/D ratio. 
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1. Introduction 

Design equations were developed in [1] for the dielectric feed-point lens used to match an 
electrically large coaxial waveguide to the feed arms of a high-voltage half reflector impulse ra-
diating antenna (HIRA). This lens converts a plane wave in the coaxial waveguide to a spherical 
wave launched onto the conical feed arms of the antenna. In [2], the design equations were re-
fined by incorporation of an impedance matching condition between the input and output of the 
lens. Since the problem could be solved semi-analytically only for a rotationally symmetric 
geometry, a single conical feed and a 0.25 F/D (parabolic reflector focal length to diameter) ratio 
were assumed. Here we extend that design approach to obtain an approximate solution for 
HIRAs with feeds that break the rotational symmetry. This permits consideration of HIRAs with 
F/D ratios larger than 0.25. As an example, we examine a high-voltage HIRA with an F/D ratio 
of 0.40. Potential advantages of a larger F/D ratio are reduced pre-pulse to impulse ratio in the 
radiated field, and improved low-frequency performance. 

In extending the design approach for HIRAs with rotationally symmetric feeds to those 
with F/D greater than 0.25, the lens design remains rotationally symmetric; but the lens is pene-
trated by an off-axis inner feed conductor. Thus, in the region behind the lens, the charge center 

is parallel to, but no longer coaxial with the 
outer conductor. Within and beyond the lens, 
the inner conductor is bent and flared to match 
the ray paths in those regions. Thus, at the 
output of the lens, the geometry is that of a 
bent cone over a ground plane. The concept is 
illustrated here in Figure 1. 

The F/D ratio of the reflector deter-
mines the angle that the charge center of the 
output cone must make with the ground 
plane—the bend angle of the charge center of 
the cone [3 (14)]. This angle, in conjunction 
with the desired output impedance, determines 
the angle between the axis of the output cone 
and the ground plane—the bend angle of the 
cone axis [3 (15)]. In turn, the half angle of the 

Charge Center

Lens

Transmission Line

Offset from
Center Line  

Figure 1. Concept for a HIRA with offset 
inner conductor and rotation-
ally symmetric feed-point lens. 
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output cone is determined by the bend angle and by the desired feed impedance [3 (16)]. The 
equations governing the cone angles referenced here are introduced in the derivation that 
follows. 

Conformal mapping between the input transmission line and the aperture plane provides a 
relationship between the F/D ratio and the relative radial offset of the charge center from the axis 
of the input transmission line [2 (A.2.7)]. Thus, both the bend angle and the relative offset are 
established by the reflector F/D ratio. Impedance matching to the bent cone output determines 
the relative conductor radii in the transmission line, and the peak electric field on the inner 
conductor places lower limits on conductor dimensions [4 (4.1) and (4.5)]. 

By retaining the rotational symmetry of the lens, we implicitly assume that the rays 
emerge from the quartic lens surface in a spherical wavefront. The inner conductor is offset such 
that the charge center follows the ray path from the input transmission line through the lens, 
which emerges at the specific angle required to obtain the target F/D ratio. The rays associated 
with the inner conductor axis and surface also follow paths determined by the lens design. Al-
though the charge center ray exits the lens at the correct angle, we find that the other rays exit the 
lens at angles slightly different from the intended ones. 

In the material that follows, we derive the relationships between the F/D ratio of the re-
flector and the input transmission line geometry; and we show how the rotationally symmetric 
lens is integrated into the offset feed design. We also present a HIRA design calculation for an 
F/D ratio of 0.40, in which the transmission line and reflector feed are designed to an impedance 
of 100 Ω in air. 
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2. Design of an Offset HIRA Feed 

2.1 Relationship of Output Reflector and Input Transmission Line Feed Geometry 

The design derivation for the offset transmission line and reflector feed for HIRA with 
F/D > 0.25 most conveniently begins at the reflector output. The reflector is described by half of 
a parabolic dish, sectioned through its axis. The cut edge and axis lie in the ground plane. We 
assume the dish opens toward the positive x-direction. Its axis is the x-axis. The focus is at the 
coordinate system origin, and the vertex is at x = −F. 

Figure 2 shows the cross sec-
tion of the dish in the x−y plane. A 
single conical feed arm (bent 
monocone) extends from the origin 
and intersects the edge of the dish at 
the elevation, y0, such that its charge 
center forms angle β0 with the ground 
plane. The aperture diameter of the 
dish is given by D = 2y0. If we let 
fd = F/D, it follows from simple 
geometry that [3 (14)] 

β 0
1

2 1 8
=

−

F
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I
KJ

arctan
f fd dd i

 (2.1) 

The angle, β, between the cone axis 
and the ground plane is obtained from 
[3 (15)], as modified for a single cone 
over a ground plane—the original ex-
pression was for a pair of cones sepa-
rated by a symmetry plane. Thus, 

β
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π
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Finally, the feed cone half angle, α, is 
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Figure 2. Geometry of a bent monocone feed for 

a HIRA with F/D > 0.25. 
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given by a similarly modified version of [3 (16)] 

 α
β
π

=
F
H
GG

I
K
JJarcsin

sin
cosh
b g
d i2 fg

 (2.3) 

where the characteristic impedance is ZC = fg Z0, and Z0 = 376.727 Ω. Thus, fd = F/D, alone 
determines  β0. The other two cone angles, α and β, are determined by both fd and fg. 

The next step in the derivation is to relate the reflector focal length to aperture diameter 
ratio, fd = F/D, to the radial offset of the charge center in the input feed line. We use a result of 
the conformal mapping presented in [2 (A.2.7)], which relates y (height) in the aperture plane to 
Ψ (radial position) in the input feed, 

 y
da

=
−
+

1
1

1

1

Ψ Ψ
Ψ Ψ

/
/

 (2.4) 

where da is the radius of a parabolic dish with focus in the plane of the dish edge, the case for 
which fd = 0.25; and Ψ1 is the radius of the outer conductor of the input feed line. This relation-
ship is valid in the z = 0 plane for y on a line between (x0, 0, 0) and (x0, y0, 0), and for Ψ = −x on 
the closed interval −Ψ1 § x § 0. Here, y0 is the intersection, corresponding to the F/D ratio of 
interest, of the charge center with the parabola. Within the cylindrical transmission line, we let 
ΨCC1 be the corresponding offset of the charge center from the axis of the outer conductor. Then, 
upon rearranging, (2.4) becomes 

 Ψ
Ψ
CC a

a

1

1

0

0

1
1

=
−
+

y d
y d

/
/

 (2.5) 

Since y0 = D / 2 and da = 2F, we have y0 / da = 1/(4 fd). Thus (2.5) becomes 

 Ψ
Ψ
CC1

1
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=

−
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/

/

f

f
d
d

c h
c h  (2.6) 

Like the charge center exit angle,  β0, we see that this ratio depends only on the assumed F/D 
ratio. 

Now that we have the ratio of the offset of the charge center to the transmission line 
radius, ΨCC1 / Ψ1, we derive the remainder of the transmission line parameters. 
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2.2 Derivation of the Characteristic Parameters of the Offset Transmission Line 

For a cylindrical transmission line feed with offset inner conductor, we have from [5 (6)], 
the conformal transformation 

 ζ
d

j w= coth 2b g  (2.7) 

where w u jv= +  and ζ = +x jy . This leads to the following complex map (Figure 3 on page 7), 
where circles of constant u (equipotentials) and lines of constant v (electric field lines) are mutu-
ally orthogonal. Since dimensions in the complex map are normalized, the axes are in dimen-
sionless units of x/d and y/d, where d is the distance from the charge center to a virtual ground 
plane. The surfaces of the inner and outer conductors are indicated in the figure at the u-contours, 
u = u0, and u = u1, respectively. Below, we show that these contours are determined by our 
choices of fd and ZC.  

We continue our derivation with reference to the complex map introduced in Figure 3. If 
we let Ψ0 be the radius of the inner transmission line conductor, and if we let ΨCC0 be the offset 
of the charge center from the axis of the inner conductor, then, from [6 (3.1)] or [5 (17)], we 
have 
 d d+ = +Ψ ΨCC1

2 2
1
2b g  (2.8) 

and 
 d d+ = +Ψ ΨCC0

2 2
0
2b g  (2.9) 

We solve (2.8) for the ratio, d / Ψ1, obtaining 

 d
Ψ

Ψ
Ψ

Ψ
Ψ1

1

1

1

1

1
2

= −
L
NM

O
QPCC

CC  (2.10) 

From [6 (3.5)] we have for the normalized ordinate 

 y
d

u
u v

=
−

sinh
cosh cos

 (2.11) 

Now, at the top of the u = u1 circle, v = 0; and at the bottom, v = π. Thus 

 
y

d
u

u
y

d
u

u
1 1

1
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11 1
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−
=

+
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cosh
sinh

cosh
 (2.12) 
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Figure 3. Complex potential map of a cylindrical feed line with offset inner conductor. The 
axes of the outer and inner conductors are separated by the distance, ΨB. On this 
map, all dimensions are normalized to the distance, d, from the charge center to 
the virtual ground plane. The equipotentials, u0  and u1  are determined by the F/D 
ratio and by the impedance, ZC. 
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and 

 
y y

d d
u
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u

u
1 1 1 1

1

1

1
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= =
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−

+
Ψ sinh

cosh
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This can be simplified to obtain 

 d u
Ψ1

1= sinh  (2.14) 

from which we readily obtain u1. Since fg = ∆u / ∆v = (u0 − u1) / 2π, we obtain u0 from 

 u u fg0 1 2= + π  (2.15) 

In a manner analogous to that used to obtain (2.14), we have 

 d u
Ψ0

0= sinh  (2.16) 

Since we know d / Ψ1 from (2.10), we now have the ratio of the transmission line conductor radii 

 Ψ
Ψ

Ψ
Ψ

0

1

1

0
=

d
d

 (2.17) 

To obtain an expression for ΨCC0 / Ψ1, we divide (2.9) by Ψ1
2 , take the square root, and solve 

for ΨCC0 / Ψ1 

 Ψ Ψ Ψ Ψ Ψ ΨCC0 1 1
2

0 1
2

1= + −d db g b g  (2.18) 

Since the axis of the inner conductor is at ( , ) ( , )x y d= +0 ΨCC0 in the complex plane, and the 
axis of the outer conductor is at ( , ) ( , )x y d= +0 ΨCC1 , the offset or separation of the inner con-
ductor axis from the outer conductor axis is obtained from 

 Ψ Ψ Ψ Ψ Ψ ΨB CC1 CC01 1 1= −  (2.19) 

where ΨCC1 / Ψ1 is calculated by (2.6), and ΨCC0 / Ψ1 is obtained from (2.18). Since the radial 
position of the outer conductor axis is taken to be Ψ = 0, we have that ΨΒ is also the radial coor-
dinate of the axis of the offset inner conductor. 

The offset transmission line feed is completely specified in terms of three physical 
parameters, Ψ1, the outer conductor radius, Ψ0, the inner conductor radius, and ΨΒ, the radial 
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offset of the axis of the inner conductor. At this point, we know how both of the other parameters 
scale with Ψ1. 

2.3 Using the Peak Electric Field to Set Minimum Feed Line Dimensions 

To complete the specification of the offset transmission line parameters, we need only 
specify the radius of either conductor. In doing so, we want to keep the peak electric field in the 
line below some maximum, as in [1 (5.2)] for the rotationally symmetric case. The peak field in 
the offset feed line occurs on the surface of the inner conductor, on the side nearest the outer 
conductor. In the complex plane, this occurs at ( , ) ( , )x y d= + −0 0Ψ ΨCC0 . At this point, the x–
component of the electric field vanishes by symmetry; and, from [7 (4.4)], we have 

 E x y V
u

u x y
yy

y d
= =

− =

= + −
0 00

0
, ( , )b g

∆ Ψ Ψ

∂
∂ CC0

 (2.20) 

where V0 is the electrical potential on the inner conductor and from [7 (4.5)] 

 u x y y d
y d

= =
+
−
F
HG

I
KJ0 1

1
, lnb g  (2.21) 

Thus, the derivative in (2.20) is just ∂ ∂u x y y d y d y= = + + −0 1 1,b g b g b g . At the hot spot 

 
∂

∂
u x y

y dy d

=
=

− −
+

−= + −

0 1
2

1

0 0 0

,b g
b gΨ Ψ Ψ Ψ Ψ ΨCC0 CC0 CC0

 (2.22) 

By using ∆u  = 2π fg and the result of (2.22) in (2.20), we obtain after some rearranging 

Ψ
Ψ Ψ Ψ Ψ Ψ Ψ Ψ Ψ Ψ Ψ Ψ Ψ1

0

0 1 1 0 1 1 1 12
1 1

,min =
−

−
− + −

L
NM

O
QP

V
f Egπ max CC0 CC0 CC1 CC1

 (2.23) 

where Emax = Ey is the maximum field permissible at the hot spot, and Ψ1,min is the minimum 
permissible outer conductor radius for the stated values of Emax and V0. Any larger radius can be 
chosen. 

With Ψ1 known, Ψ0 is obtained from (2.17); and ΨΒ is obtained from (2.19). We turn 
now to design of a rotationally symmetric feed-point lens to integrate with the offset feed. 
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3. Design of a Rotationally Symmetric Lens for Use with an Offset Feed 

3.1 Adaptation of the F/D = 0.25 Design Algorithm for Use with an Offset Feed 

In [2], the lens design calculation for a 
HIRA with a 0.25 F/D ratio was begun by 
specifying the dielectric constants in the input 
transmission line, in the lens region, and in the 
output region beyond the feed-point lens. 
Figure 4 depicts the lens design geometry and 
identifies the significant design parameters. In 
addition to the dielectric constants, we specify 
the output impedance, that of an upright mono-
cone over a ground plane, and matching input 
impedance of the coaxial feed line. The outer 
feed conductor radius is chosen to be consis-
tent with a specified peak electric field con-
straint, and the lens radius at the ground plane 
is chosen subject to the constraint that the lens have a non-zero thickness on-axis. The lens 
design equations are then solved numerically. 

In this case, based on the F/D ratio and on the input and output impedance, ZC, we have 
already determined the geometry of the offset feed and the exit angle of the charge center. The 
goal of our lens design is to cause a ray, which is injected parallel to the axis of the input feed 
and at the radial location of the charge center, ΨCC1, to exit the quartic surface of the lens at the 
angle required by the F/D ratio, β0. This will happen if we choose the center conductor radius for 
the lens calculation, Ψ0,lens, equal to ΨCC1, and if we make ϑ0, the half angle of the output ray 
monocone, equal to the complement of β0. We have appended the subscript “lens” to Ψ0, as used 
here, in order to avoid confusion with the radius of the offset inner conductor.  

The lens design algorithm calculates ϑ0 from the expression for the characteristic 
impedance of a monocone over a ground plane [2 (2.8)] as 

 ϑ 0 2= arccot KZb g  (3.1) 
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Outer Conductor

Lens
Output
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ϑ π1 2= /
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ϑ 0

− +1 2b g − + +1 2 db g − + + +1 2 d ab g 2b g
z

Ψ

z2 2,Ψb g
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Oil,ε 1 z3 3,Ψb g

z1 1,Ψb g

z0 0,Ψb glens

Quartic Surface
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Figure 4. Lens design parameters. 
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where K f Z ZZ = =exp exp2 2 0π πg,monocone C,monoconed i d i . Since, here we use ϑ0 = 90° − β0, 
we simply calculate the constant, KZ , by inversion of (3.1), rather than basing it on impedance. 

From this point, the lens design algorithm proceeds exactly as for the rotationally sym-
metric, F/D = 0.25, HIRA. We summarize that method here. Later, we present a sample design 
calculation using this approach. 

3.2 Lens Design Algorithm as Applied to a HIRA with Offset Feed 

As described above, there are only minor adjustments required to adapt the lens design 
approach described in [2] to the case of a rotationally symmetric lens used with an offset feed. 
Three parameters normally established at the start of the design calculation are now determined 
by a prior offset feed design calculation: (1) the exit ray monocone half angle, ϑ 0 , is determined 
by β0, the angle between the emerging charge center and the ground plane; (2) the inner con-
ductor radius, Ψ0,lens, is taken to be the radial coordinate of the offset charge center, ΨCC1; and 
(3) the outer conductor radius for the offset feed, Ψ1, is also the outer conductor radius for the 
lens design. A fourth parameter, the lens radius at the ground plane, Ψ2, remains arbitrary, sub-
ject to the minimum required to ensure that the lens has non-zero thickness on axis, and that 
electrical breakdown does not occur between the emerging offset feed and the ground plane. 

We begin the design algorithm by numerically solving [2 (2.17)] for the conductor flare 
angles, θ θ1 0and , as shown above in Figure 4, 

 
− + − + +FH IK

− + − + +
=
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where we have made the change of variable, xi i= cotθ ; and where, from [2 (2.18)], we have 
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and KZ = cot ϑ 0 2b g , ε ε ε ε ε εr r1 2 1 2 2 3= =, and . After using (3.3) to eliminate x0  from 
(3.2), we use Newton’s method to solve for x1 1= cotθ . Next, x0  is obtained from (3.3); and θ1 
and θ 0  are recovered as arccot x1b g  and arccot x0b g , respectively. 

This completes the lens design, save specification of the output lens radius, Ψ2. The 
parameters of the ellipsoidal surface, a and d, are obtained from [2 (2.11)] and [1 (3.2)] as 

 a d ar

r
r r=

−
+ =

ε
ε

θ ε θ ε1

1
1 1 1 1 11

cot cscd iΨ    and    (3.4) 

The ratio, 2 1 , is obtained from [2 (2.10)] as 

 2

1

2 1 1

1 2 1

1
1

=
− + − +

− − +

ε θ θ
θ ε θ

r

r

cot csc
cot csc
b g  (3.5) 

Next, the ratio, Ψ2 1 , is calculated from [2 (2.19)] as 

 Ψ2

1

2 1

1

1
=

−
cotθ

 (3.6) 

Finally, from Figure 4 on page 10, the thickness of the lens on axis is just, 0 1= − +a db g . 
Thus, in terms of lens thickness, we can write 

 Ψ
Ψ

2 0
2

1
= + +a db g  (3.7) 

The minimum allowable lens output radius, Ψ2,min, occurs for 0 0= . 

Equation (3.7) can be used to determine the Ψ2 required to produce any desired lens thickness, or 
any value larger than Ψ2,min may be chosen, for example, to satisfy an electrical breakdown con-
straint. The design is completed by calculating 1  from the ratio produced by (3.6), and 2  from 
the ratio generated by (3.5). 
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4. Sample Design Calculation for a HIRA with an Offset Feed and 0.40 F/D Ratio 

We apply the design approach just derived to the case of a 100 Ω HIRA driven by a 
cylindrical transmission line with offset inner conductor. The impedance of the oil-filled trans-
mission line is 67 Ω (100 Ω in air). Thus,  fg = ZC / Z0 = 100/376.727. We postulate a peak 
driving voltage, V0, of 2.6 MV, and a maximum permissible electric field in the transmission 
line, Emax, of 2 MV/cm. Although we assume a single conical feed for the half reflector, in prac-
tice, this can be replaced by a pair of 
equivalent 200 Ω feed cones, as depicted 
later in Figure 9 (on page 19). Table I sum-
marizes the parameters that served as input 
to the calculation of the offset feed line de-
sign. Table II lists the resulting feed line 
dimensions. 

The charge center output angle, β0, 
the radius at the charge center in the input 
feed, ΨCC1, and the radius of the outer con-
ductor, Ψ1, are then used in a lens design 
calculation, as described above and in [2]. 
The lens design assumes that the transmis-
sion line is filled with oil having a relative 
dielectric constant of 2.2, while the lens is 
assumed to have a relative dielectric con-
stant of 7.0. The maximum radius of the lens 
was set to 13 cm. 

Table I. Parameters used to calculate the 
offset transmission line design. 

Parameter Value Source 

fd 0.400000 Assumed 

ZC 100.000 Ω Assumed 

V0 2.6 MV Assumed 

Emax 2 MV/cm Assumed 

fg 0.265444 ZC/Z0 
β0 64.0108° (2.1) 

ϑ0 21.3671° 90°−β0 
ΨCC1/Ψ1 0.230769 (2.6) 

d/Ψ1 2.05128 (2.10) 

u1 1.46634 (2.14) 

u0 3.13417 (2.15) 

d/Ψ0 11.4630 (2.16) 

Ψ0/Ψ1 0.178947 (2.17) 

ΨCC0/Ψ1 0.00779062 (2.18) 

Ψ1,min 4.75229 cm (2.23) 
 

Table II. Offset transmission line dimensions. 

Item Parameter Value Source 
Radius of outer conductor Ψ1 4.75 cm Chosen t Ψ1,min 
Radius of inner conductor Ψ0 0.849998 cm (Ψ0/Ψ1) Ψ1 
Offset of axis of inner 
conductor from axis of 
outer conductor 

ΨB 1.05915 cm (ΨCC1/Ψ1−ΨCC0/Ψ1) Ψ1 
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Table III summarizes both specified and calculated lens design parameters. For the lens 
design, the ground plane is normal to the symmetry axis of the lens. The coordinate system ori-
gin, (z, Ψ) = (0,0), is at the intersection of the symmetry axis and ground plane. With the excep-
tion of Ψ0,lens, the parameter symbols used in the table are those detailed in [2] and identified on 
page 10 in the lens design sketch (Figure 4). In Figure 5, a sketch based on the parameters listed 
here is overlaid with the offset transmission line design results presented previously in Table II. 

Table III. Lens design parameters for use with an offset transmission line 
feed for a F/D = 0.4 HIRA. 

Item Parameter Value Source 
Specified Values 

Coax dielectric constant ε1 2.20000 Assumed 
Lens dielectric constant ε2 7.00000 Assumed 
Output dielectric constant ε 3 1.00000 Assumed 
Output ray cone angle ϑ 0  25.9892° 90 0°−β  
Charge center radius Ψ0, lens  1.09615 cm ΨCC1 
Outer conductor radius Ψ1 4.75000 cm Offset choice 
Lens radius at ground plane Ψ2  13.0000 cm Assumed, (3.7) 

Calculated Values 
Impedance constant KZ  4.33334 cot ϑ 0 2b g  
Charge center flare angle θ 0  7.10° (3.2) 
Outer conductor flare angle θ1 55.24° (3.2) 
Ellipsoid semi-major axis length a  5.737 cm (3.4) 
Ellipsoid focal length d  3.216 cm (3.4) 
Ellipsoid focal point to quartic 

surface distance 
1 12.058 cm Ψ Ψ2 2 1b g  

Quartic surface location 2 3.036 cm 2 1 1b g  
Lens thickness on-axis 0  3.105 cm 1 − −d a  

Interface Intersections 
Ellipsoid—charge center z0 0,Ψb glens  (-0.224 cm, 

1.096 cm) 
Ray tracing 

Outer feed conductor—lens z1 1,Ψb g (-5.725 cm, 
4.750 cm) 

Ray tracing 

Quartic—charge center z3 3,Ψb g (3.097 cm, 
1.510 cm) 

Ray tracing 
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An examination of the comparison of predicted and observed (based on ray tracing) feed 
cone parameters presented below in Table IV reveals that the design developed here is approxi-
mate, since only the charge center exit ray angle, β0, agrees exactly with the theory. The apparent 
or ray cone-based output impedance is calculated by inversion of (2.3) as 

 Z Z
C = F

HG
I
KJ

0
2π

β
α

arccosh sin
sin

 (4.1) 
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Figure 5. Offset transmission line with symmetric feed-point lens for a 100 Ω half 

reflector IRA with a 0.40 F/D ratio. 
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where we interpret the observed ray cone angle as 2α , and the apparent axis of the ray cone, 
βAPPARENT, defines β. The impedance, implied by this exit envelope of the rays that define the 
extremes of the offset inner conductor, is 105.83 Ω, about 6% high. 

Table IV. Comparison of predicted and observed feed cone parameters. 

Feed Cone Parameter Predicted Value Based on Ray Exit Angles from Lens 
β0 64.0108° 64.0108° (charge center ray) 
β 67.7335° 64.7856° (axial ray) 

βAPPARENT 67.7335° 66.9400° (ray envelope center line) 
2α 39.4096° 35.6392° (ray envelope) 
ZC 100.00 Ω 105.83 Ω (α, βAPPARENT, (4.1)) 
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5. Discussion of the Results of the Sample Offset HIRA Design Calculation  

To explore the deviations between our predicted and “observed” ray tracing results 
(Table IV, above), we next consider the differing functional forms of the electrical potential 
within the feed-point lens system. Three regions may be identified: (1) the oil-filled coaxial input 
region, (2) the biconic lens region, and (3) the monocone-over-ground plane output region. For a 
plane wave propagating in the axial (z) direction within the coaxial region, a ray initially at the 
radial coordinate, Ψ = ΨC (the coaxial insertion radius), where a < ΨC < b (Figure 6), follows an 
equipotential within each region. However, except at the surfaces of the conductors, the geomet-
rically traced ray follows a different equipotential within each region. 

We now develop expressions for the poten-
tial function in each region and calculate the extent 
of the shifts in potential identified above. First, in 
the input coaxial region, we need the potential as a 
function of the cylindrical radius, Ψ. The potential 
on the center conductor is V = V0; on the outer con-
ductor, it is V = 0. Thus, between the conductors, 
the potential as a function of radius is given by 

 V VΨ
Ψb g b g
b g= 0

ln
ln

b
a b

 (5.1) 

Next, for the biconic lens region, we implement a stereographic projection in the direction of the 
axis. The result is another coaxial geometry. In the following set of equations for the projection, 

note that the parameter, R0, is arbi-
trary. 
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=

=
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Figure 6. Coaxial geometry. 
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Figure 7. Stereographic projection of a pair of 

coaxial cones joined at the vertex leads 
to a coaxial cylindrical geometry. 
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Now, from (5.1) and (5.2), the potential of the projected structure is 

 V VΨb g
b g
c h
b g
c h

=

F
HG

I
KJ

F
HG

I
KJ

0

2
2

2
2

ln
tan

tan

ln
tan
tan

θ
θ

θ
θ

b

a
b

 (5.3) 

This expression is applicable to the region interior to the lens, where the flare of the outer con-
ductor forms the outer cone and the flare of the center conductor forms the inner cone. Outside 
the lens, the geometry is that of an upright monocone over a ground plane. Here, θ b → 90 ; and 

(5.3) reduces to 

 V VΨb g b gc h
b gc h= 0

2
2

ln tan
ln tan

θ
θa

 (5.4) 

The normalized voltage functions, V(Ψ) / V0, for input coaxial, lens biconic, and output 
monocone regions, as functions of the coaxial insertion radius, ΨC, were computed for the lens 

designed in the preceding exam-
ple. The results are presented in 
Figure 8. These results indicate 
that all rays, except those at 
the conductor surfaces, expe-
rience a different potential within 
each region. The magnitude of 
the potential shift at each inter-
face is a function of insertion ra-
dius. The three curves in the 
figure give the relative potential 
as functions of the radial coordi-
nate at insertion: for the coaxial 
insertion region, for the lens re-
gion, and for the lens output re-
gion. If our design theory were 
exact, these three curves would 

overlap perfectly; and every inserted ray would remain on the same equipotential as it is ray-
traced through the structure. 
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Figure 8. Relative potentials for a rotationally sym-

metric feed-point lens design. The potentials 
are shown within the input feed (coaxial re-
gion), within the lens (bicone region), and at 
the lens output (monocone region), as func-
tions of the coaxial insertion radius. 
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6. Offset HIRA Reflector Feed Considerations 

Although our design calculations have assumed a single conical feed for the half reflec-
tor, in practice, this feed would be replaced by a pair of equivalent 200 Ω feed cones, as depicted 
in Figure 9. Only the front view 
is shown here, as the side view is 
indistinguishable from that of 
the bent monocone shown in 
Figure 2 on page 4. This 
design has a disadvantage, 
however, in that the lens pro-
trudes beyond the ground 
plane, and the feed arms should 
ideally be joined near the ground 
plane level, at the focus of the 
quartic surface of the lens. This 
would require that the feed arms 
be joined inside the lens, a de-
sign that would be difficult to 
manufacture. If this situation were to become a problem, we could split the inner conductor 
before entering the lens, as shown below in Figure 10. Additionally, to minimize the impedance 
discontinuity, the transition from a single offset inner conductor to a pair of conductors could be 
made as gradual as might prove appropriate. 

 

45°45°

Front View

 
Figure 9. Offset HIRA fed by a pair of 200 Ω cones. 

This feed cone arrangement has an imped-
ance of approximately 100 Ω. 

Offset and Split
Center Conductor

Front View Side View

 
Figure 10. Offset and split inner conductor feed for a 

HIRA with F/D ratio larger than 0.25. 
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7. Concluding Remarks 

We have provided a design approach for the feed-point lens and offset cylindrical feed 
line needed to build a high-voltage half IRA with an F/D ratio larger than 0.25. For the example 
with an F/D ratio of 0.40, the ray paths through the lens at the offset feed location are not quite 
correct. However, the impedance based on these rays is only slightly different from the design 
target. This difference may be related to the shifts in potential experienced by rays traversing the 
feed-point lens system. It seems unlikely that a significant impact on measurable HIRA 
performance can be expected to result from the approximate nature of this design approach. 
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