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Abstract

There is some ambiguity in reiating the usual CW (IEEE) definition of antenna gain to its time-
domain response (transmitting and receiving). This involves issues of direction of incidence,
polarization, and phase dispersion. In this paper we develop restrictions necessary to simplify this
relationship.
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1. Introduction

In [3, 10] the problem of appropriate definition of antema gain and radiation pattern in time

domain is considered in some detail. Using timedomain reciprocity the definitions are made to apply

in both transmission and reception. Since the timkomain parameters are equivalent to the related

frequency-domain parameters considered over all frequencies, the timedomain parameters are not

simple numbers, but in general vector convolution operators Specifically the gain is related to an

appropriately normalized effective height convolution operator. This can in turn be reduced to a scalar

number by application of appropriate mathematical norms. (A summary of these results, with an

example, is included as Appendix A.)

Figure 1.1 indicates various parameters appropriate to an antenna in transmission and reception.

Summarizing from [2] in transmission we have the radiated far electric field

s+ ~–7r + +
E/(r, s)=y Ff(lo,s)ws)

tit(s) = -
Zj~(S)

VS(s)= transmitted voltage
ZL(S) + Z“n(s)

ti~(s) = source voltage

~L(s) = load impedance

v~(s)Zjn(s)=~ . antenna input impedance
It(s)

+
10 = direction to far- field observer

r = distance to far - field observer

- = Laplace transform (two - sided)

s = Q + jo = complex frequency or Laplace - transform variable

y = ~ = propagation constant

1

c = [WEO]–I = speed of light

(1.1)

Note that the antenna may have a transmission line (e.g., a coaxial cable or strip line) of characteristic

impedance Zc, comecting the antenna to the source/receiver. This input impedance is in general not the

same as this, except in cases where this is part of the specific design. In time domain, however, if one

puts a pulse into the port then V(t)/ I(f) will be Zc for a time given by the round-trip transit time.
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Fig. 1.1. Antema in Transrnission and Reception
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In reception we have

- (k). -
+
E (~,s) = a3(s)e-7i”; _ .= incident plane wave

+
Ii = direction of inadence

z
Eo(s)-; =O

- (ix) - -

7,(s) = It(;, s) .E (is) = L(;,s)” 20(s)
(1.2)

s+
h t(li ,s) = effective height

;t(~,s). ~ = O (no ~ component of incident electric field)

;,(s) = voltage across load ZL(S)

v,(s)
iz~(s) = ~

Ir(s)

Note the opposite direction conventions of If and Ir.

Now applying reciprocity [2] we have the fundamental result

z+ ++
Ff(lo,s)= *[7i~(S)+ ‘Y~(S)]h f(–lo,S)

s +
where we have here defined h t such that it has only a transverse part with respect to li = – ~.

Otherwise we can use the transverse dyads

(+ -+ +(+ H ++
Io=l–lol O,li=l–lili

to dot multiply ;t to make it purely transverse. Note that for the special, but useful, caw that

i.e., a

2i~(S) = 2~(S) = R

frequency-independent input impedance with a matched load, we have

<+
Ft(lo, s)= ~it(-;,s)

(1.3)

(1.4)

(1.5)

(1.6)
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2. Effective Area (CW) of Antema in Reception

The effective area or effective aperture of an antenna [8,9] is traditionally defined via

Fr(jo) = ~~(j~)~(inc)(jfn) (2.1)

where the nxeived power ~r(j~) is taken as the real power (or real part of the power) into the antenna

load ~~(j~). Note that the above form has been used on the j~ axis of thes plane. Furthermore there

is the polarization and angbof-incidence dependence of these parameters to consider.

In analytic (s-plane) form the received power can be defined as

y)(s) = VJS)7F(-S) = ;,(s);, (–s)7-(–s) (2.2)

Alternately one could use

(2.3)~:2)(s) = ~r(–S)~r(S) = ~r(–S)~,(S)YL(S)

Another interesting form then averages these as

[
~r(s) = tir(s)tir(-s)~ ~L(s) + ~L(–s)] (2.4)

which gives an even function of S. of course if the load is a frequency-independent resistance R, then

the above all give the same result as

F,(s) = +Vr(s);,(–s) (2.5)

This is an important case for application with transient waveforms (pulses). Note that this power can

also be defined with a factor of 1/2 by averaging over a cycle, but this is a common factor with the

Poynting vector, not influencing the effective area.

The incident pIane wave in (1.2) has a magnetic field

1

[1

~=;= 2#. wave impance of free space

(2.6)

Now define an analytic form of the Poynting vector as
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- (inc) -Jinc) ~(inc)

; (:,s)= E (?,s) x H (7,–s)

- (ind - (inc)

=qz
al

(7,s).2 (7’,-s) (2.7)

= A;a)(s) .;0(–s)
z)

which is conveniently independent of r. The above form then allows us to define a scalar form of the

Poynting v~or as

- (inc) - -

; (s) = +20(s). 3-s)

which is also an even function ofs.

This allows us to write

A+d;,S)=y [ 1

Vr(s)v,(–s)4 Y-L(S)+ 7L(–S) - _
+
E o (S).;o(–S)

which is an even function ofs. From (2.1) we then have

Z#i,s) = *[7L(s)+k(-s)] ~o(s)”~’!~’s)~:(~’-s)”~o(-s)+
E o(S). ;o(–S)

Note that

is obviously Hermitian. With s = j~ then (2.1O) is maximized by choosing

-*
< ++ ++
Eo(j@) = C~(jo) h t(li, j~)= Co(–j@) h t(li, –j~)

CO = scalar function # O

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

This CO can be a simple real constant if desired. Then we have a maximum

6



I
.

(2.13)

This suggests that we define an analytic form in thes plane as

+
4“Z~)(li,S)S ~

[ 1— Y~(s) + 7L(–S) It(;, s) . zt(;,–s) (2.14)

Note that there also exists a polarization of the incident electric field such that

Zff(;,s) = o (2.15)

namely an electric field such that

E o(jo) -;~(~, jo) = O
+’

(2.16)

% the effective area can be considered as a function of the polarization ~ with

where the polarization can even be complex as

Here we have maximized over l;. We can also maximize over ~ if we desire as

Ii real

(2.17)

(2.18)

,

(2.19)

+
The corresponding Ii is opposite to the ~ for maximum gain in transmission.
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3. CW Antenna Gain

Antenna gain is usually defined as

.+ 4nr2 ~+ ~’+
E~(lO,j@). Ej(lo,jo) (3.1)

‘(lO’jO) = ~ R~l&(jco)]

where the usual far-field behavior is assumed. The pwer into the antenna in analytic form can be

defined as

w(s) = VJS)7J-S) = Vt(s)vt(–s)Yin(–s)in (3.2)

analogous to the received power in (2.2). Similarly we have alternate forms as

P(2)(S) ~ 7~(–S)~(S) = Vf(S)7f(–S)fin(S)in

~n(S) = V~(S)Vf(–S) =Vt(S)tit(-S)~[~in(S) +~n(–s)]
(3.3)

If the antenna has a frequency-independent input resistance R (which is the case for special antennas of

interest), then the above all reduce to

~n(s) = * Vt(S)V*(–S) (3.4)

The gain now takes the analytic form

G+-+

E(;,5) =
8nr2 E/(lo,s)&(lo,-s)

(3.5)
~[~n(s) + ~n(-s)] v~(s)vf(–s)

which is an even function ofs, as well as real and positive for s = j~. From (1.1) and (1.3) we have

z+-
E(;,s) = 8X

Ft(l&s). Ft(;,-s)
~[~n(s)+~n(.$)]

* _ [sW]2 [in(s)+ ‘L(s)] [~in(-s)+ ~~(-s)] ~ + - +
_—— hf(-lo,s ).if(–lo,–s)

2G Yin(S) + ~n(–S)

One can now define

(3.6)

(3.7)

so that

G(lI-J,S)= g(ll),s). g(lo,–s) (3.8)
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In this form g represents a relationship between voltage or current and field (linear) while ~ is in

terms of power.

In terms of the effective area we have

[~~]2 [7in(s)+7L(s)][~i~ (-s)+7~(-S)]
&;,s)=-- Zf#(-Yo,s)

%2 [XJS)+Z.(-S)][7L(S)+ YL(-S)]

[ 1[
~2 yin(s)+ ~~(s) ~n(–s) + ~L(–s) -?

.—— 1

[ 1[

Z(o?-lo,s)
Z ~in(S)+ yin (–S) ~L (S)+ ~L(–S)

1
eff

(3.9)

(3.10)



I

.. .

,

4. Special Case of Resistive Matched Load

The foregoing results simplify considerably for a resistive matched load. Returning to fig. 1.1 we

note that we can now restrict

Zi~(S) = Z~(S) = ‘. = f~% (4.1)

so that the resistive impedance is the same as the characteristic impedance of a transmission-line

antenna fed. This of course also requires more of the antema design so that the antenna presents a

resistive “terrnimtion” to the feed line of resistance Zc. Fortumtely some kinds of antennas have this

property, at least to a reasonable approximation. (See, e.g., the TDR measurements in [4].)

From (2.10) the effective area kcomes

1 E()(s). ht(li,s) ht(li, –s). EO(–S)
~(ii,s)=~ (4.2)

:-
Eo(s).;o(–s)

with the frequencydependent admittances now removed. The maximum over polarization as in (2.14)

now kecorms

The gain in (3.9) and (3.10) is now

~z It(–;, )c(~,s)=–~~$(-io,s)=–—
@g

s .; f(–;, –s)

(4.4)

So this case of resistive matched load considerably simplifies the formulae by the removal of some of

the frequencydependent factors.
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5. Relation of Effective Height to Effective Area and Gain Under Restrictive Assumptions

It is the effective height which gives the transmission and reception properties of an antenna in a

linear sense, including phase. In time domain it is the effective height as a convolution operator that is

directly related to the pulse response. TO what extent can the effective height be inferred from the

effective area or gain?

Note first that effective area and gain are scalars, whereas effective height is a vector (related

to the polarization). On the jro axis we have

(5.1)

Thus the best that can be inferred from ~(o) or ~ is the magnitude of the effective height. If one has
#

+
polarization dependent information as in (4.2) (including complex polarizations perpendicular to Ii )

G
then the orientation of h t can also be inferred.

z
At this point one can impose additional assumptions. SuppOse that the orientation of h t is

+
known for Ii of interest (say from symmetry in the antenna) and this orientation is real so that we can

write

(5.2)

Then ~ and ~(o)
M

efi can infer &(j@ which does not include phase. If ~ is frequency-independent (which

it is in some cases) then the problem is redu~ to determining h (j@) (and hence h(s)) as our transfer

function of interest.

Even with the foregoing assumptions there still is the problem of phase. From (5.2) we have

(5.3)
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which seems a simple way to relate the effective height to gain. However, in the way gain is defined

(section 3), ithas no phase information (on the j~ axis). So various possible effective heights can

correspond to the same gain function. The simplest case has

.+
k(li,s) = ~(o)(~,s)e-~o (5.4)

which is just an added delay of a time to to some other effective height. Such a delay (such as by a

length of transmission line) is not important here. However, for transfer functions (effective height

being such a function) one can have more generally

Z&) = ~(%;,s);(s)

t-l

(5.5)

a(j~ =1

Such a function ~(s) is called an all-pass function [6,71 which can be realized various ways in an

idealized circuit synthesis sense (but perhaps with practical difficulties involving real circuit

elements over a very large band of frequencies).

The effect of this phase ambiguity is to give various transient responses to the various antenms

with the same gain function of frequency. Some antennas are less dispersive than others. This can be

interpreted loosely as keeping a pulse more together (not spreading out in time). This also tends to

increase the amplitude of the radiated transient field. An interesting question concerns the construction

of mme optimal lq from a given G . This is something like a minimum -phase problem. From (3.8) for a

fixed polarization ~ as in (5.2) we have

(5.6)

[t J ~)Ore’@@The function tn g(~ ju can then be Hilbert transfomwd to obtain a phase function

arg(~(~,j~~)fifi~n(~(jo~) which is a minimum pha~ function, thereby giving at least one form of

the complex function(s). This may give some kind of “best” effectheheight function for a given gain

function. Realizing this in a practical antenna is another matter.

One type of ideal effective-height function is

12
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-)-) +

h t(l~,s)= he –’fo 1*

A-4

for a particular choice of l; = –10 (foresight). This approximately

(5.7)

characterizes an impulse radiating

antenna (IRA) [1] in reception [2]. (This holds over a large band of frequenaes, limited by antenna size

at low frequencies and construction details and conductor losses at high frequencies.) Note the inclusion

of a simple delay fO, such as occurs on ideal transmission lines (cables). By appropriate choice of

reference for time or phase, this can be made zero. In this case we have

1$(;,5) = %
fg

(5.8)

As we can see the effective height gives the effective area and gain, but these latter eliminate the

phase information and make the inference of the effective height have an unknown delay which could

be a function of frequency.

13
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6. Concluding Remarks

As we have seen, it is possible to relate the usual CW antenna gain (IEEE) to the effective height

oprator which more adequately expresses the timedomain response in both transmission and

reception. This relationship results in some loss of information. There is a requirement first of a

constant-resistance load at the antenna port, matched to the same constant-resistance input impedance

of the antenm, unless one is willing to carry these as extra factors in the relationship. Second, one

needs a frequency-independent polarization for the given angle of inadence (e.g., boresight), and a

corresponding constant (frequency indepmdent) orientation of the effective height. Third, the loss of

phase information results in an unknown dispersion of a pulse. If one is willing to place additional

constraints (assumptions, as in the case of an lRA of various types) then this phase ambiguity can be

resolved.
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Appendix A: Summary of the Gain Equations with an Example

We consider here how to convert our measured antenna parameter, h(t), for single polarization on

boresight to something close to the IEEE definition of frequency domain gain. We consider, by example,

how to implement this as well as can be done.

We begin with the standard expressions in the frequency domain. Thus, the received power is

Fr = ztiF(i@ (Al)

where ~(inc) is the incident power density in Watts/mz and ~ is the effective aperture. Gain is

related to effective aperture by

~2 -
~~ =ZG (A.2)

Combining the above two equations, we have

Take the square root, and

(A.3)

recast into voltages

(A.4)

where ~ is the impedance of free space and Zc, the feed or input impedance, is assumed a positive

constant. T’bus, the final result in the frequency domain is

‘Jzfg ~(inc)
vr=— (A.5)

26

where fg=~c/~.

Let us now compare the above equation to one that we have been using in the time domain, i.e.,

V,(t) = ~(t) o E(inc)(t) (A.6)

where the “0” symbol indicates convolution. We routinely have already measured h(t), so we just have

to rescale to get gain. Converting this to the frequency domain, we have

Vr(ja) = ~(j~)~(inc)(jo) (A.7)

Now compare equations (5) and (7), to get

E2zd (A.8)

15
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We can use this to scale our h(t) waveforms to get a frequency domain gain. Note the similarity

between equations (A.2) and (A.8). The implication is that the effective aperture as a function of

@ency iS h~(jco)/~g, which is a rather simple and pleasing result.

There is a drawback with the definition in that it does not take into account dispersion, or time

delay. If different frequencies have different time delays (as happens on more conventional antemas),

the received pulse will not be clean. But the above definition of gain does not take this into account.

Thus, using this definition of gain, two antennas with the same gain can have very different peak

radiation E-fields.

Using this theory, we can calculate the gain of the 9-inch diameter reflector and lens IRAs,

which were originally measured in [5]. The gain of the 9-inch diameter reflector IRA is shown in fig.

A.1 and the gain of the 9-inch diameter lens IRA is shown in fig. A.2. When comparing the two gains,

the most striking difference is apparent at the low frequencies, between 1 and 3 GHz. The dip in h(jfo)

in this region becomes quite apparent when it is multiplied by frequency squared. We presume this dip

occurs because the feed arms are not terminated in the reflector design. Future designs will include

terminations of the feed arms. Even without the dip there is a 3 dB advantage for the lens design.

16
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Figure A.1. Gain of the 9-inch reflector R&
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Figure A.2. Gain of the 9-inch lens IRA.
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